【題目】已知函數(shù)

1)若處取得極值,求的值;

2)求在區(qū)間上的最小值;

3)在(1)的條件下,若,求證:當(dāng)時(shí),恒有成立.

【答案】12;(2;(3)證明見解析

【解析】

1)先求出函數(shù)的定義域和導(dǎo)數(shù),由已知函數(shù)處取得極值,得到,即可求解的值;

2)由(1)得,定義域?yàn)?/span>,分三種情況討論,分別求得函數(shù)的最小值,即可得到結(jié)論;

3)由,得到,把,只需證,構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最值,即可求解.

1)由,定義域?yàn)?/span>,則,

因?yàn)楹瘮?shù)處取得極值,

所以,即,解得,

經(jīng)檢驗(yàn),滿足題意,所以.

(2)由(1)得,定義域?yàn)?/span>,

當(dāng)時(shí),有,在區(qū)間上單調(diào)遞增,最小值為,

當(dāng)時(shí),由,且,

當(dāng)時(shí),,單調(diào)遞減;

當(dāng)時(shí),,單調(diào)遞增;

所以在區(qū)間上單調(diào)遞增,最小值為

當(dāng)時(shí),則,當(dāng)時(shí),,單調(diào)遞減;

當(dāng)時(shí),,單調(diào)遞增;

所以處取得最小值

綜上可得:

當(dāng)時(shí),在區(qū)間上的最小值為1,

當(dāng)時(shí),在區(qū)間上的最小值為.

3)由,

當(dāng)時(shí),,則

欲證,只需證,即證,即,

設(shè),則

當(dāng)時(shí),在區(qū)間上單調(diào)遞增,

當(dāng)時(shí),,即,

, 即當(dāng)時(shí),恒有成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)恰有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】程大位是明代著名數(shù)學(xué)家,他的《新編直指算法統(tǒng)宗》是中國歷史上一部影響巨大的著作.卷八中第33問:“今有三角果一垛,底闊每面七個(gè).問該若干?”如圖是解決該問題的程序框圖.執(zhí)行該程序框圖,求得該垛果子的總數(shù)S為( )

A.28B.56C.84D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,平面平面,,,的中點(diǎn),平面,.

1)證明:、、四點(diǎn)共面;

2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若曲線的切線方程為,求實(shí)數(shù)的值;

2)若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求的單調(diào)區(qū)間;

2)若函數(shù)在區(qū)間上無零點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),下列給出四個(gè)結(jié)論:

的最大值為2;

在區(qū)間上的單調(diào)增區(qū)間是;

③在中,若,則

④將曲線向左平移個(gè)單位,得到函數(shù)的圖象,再將曲線

所有點(diǎn)的縱坐標(biāo)變?yōu)樵瓉淼?/span>2倍(橫坐標(biāo)不變),得到函數(shù)的導(dǎo)數(shù)的圖象.其中正確的是_______________(填寫所有正確結(jié)論的編號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(1)設(shè)函數(shù)(其中的導(dǎo)函數(shù)),判斷上的單調(diào)性;

(2)若函數(shù)在定義域內(nèi)無零點(diǎn),試確定正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某客戶準(zhǔn)備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為二級過濾,使用壽命為十年如圖所示兩個(gè)二級過濾器采用并聯(lián)安裝,再與一級過濾器串聯(lián)安裝.

其中每一級過濾都由核心部件濾芯來實(shí)現(xiàn)在使用過程中,一級濾芯和二級濾芯都需要不定期更換(每個(gè)濾芯是否需要更換相互獨(dú)立).若客戶在安裝凈水系統(tǒng)的同時(shí)購買濾芯,則一級濾芯每個(gè)160元,二級濾芯每個(gè)80.若客戶在使用過程中單獨(dú)購買濾芯則一級濾芯每個(gè)400元,二級濾芯每個(gè)200.現(xiàn)需決策安裝凈水系統(tǒng)的同時(shí)購買濾芯的數(shù)量,為此參考了根據(jù)100套該款凈水系統(tǒng)在十年使用期內(nèi)更換濾芯的相關(guān)數(shù)據(jù)制成的圖表,其中表1是根據(jù)100個(gè)一級過濾器更換的濾芯個(gè)數(shù)制成的頻數(shù)分布表,圖2是根據(jù)200個(gè)二級過濾器更換的濾芯個(gè)數(shù)制成的條形圖.

1:一級濾芯更換頻數(shù)分布表

一級濾芯更換的個(gè)數(shù)

8

9

頻數(shù)

60

40

2:二級濾芯更換頻數(shù)條形圖

100個(gè)一級過濾器更換濾芯的頻率代替1個(gè)一級過濾器更換濾芯發(fā)生的概率,以200個(gè)二級過濾器更換濾芯的頻率代替1個(gè)二級過濾器更換濾芯發(fā)生的概率.

1)求一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個(gè)數(shù)恰好為16的概率;

2)記表示該客戶的凈水系統(tǒng)在使用期內(nèi)需要更換的二級濾芯總數(shù),求的分布列及數(shù)學(xué)期望;

3)記分別表示該客戶在安裝凈水系統(tǒng)的同時(shí)購買的一級濾芯和二級濾芯的個(gè)數(shù).,且,以該客戶的凈水系統(tǒng)在使用期內(nèi)購買各級濾芯所需總費(fèi)用的期望值為決策依據(jù),試確定的值.

查看答案和解析>>

同步練習(xí)冊答案