【題目】在如圖的多面體中,EF⊥平面AEB,AEEBADEF,EFBCBC=2AD=4,EF=3,AE=BE=2,GBC的中點(diǎn).

(Ⅰ)求證:AB∥平面DEG;

(Ⅱ)求二面角C-DF-E的余弦值.

【答案】(Ⅰ)四邊形是平行四邊形平面(Ⅱ)

【解析】

試題()利用判定定理證明線面平行時(shí),關(guān)鍵是在平面內(nèi)找一條與已知直線平行的直線,解題時(shí)可先直觀判斷平面內(nèi)是否已有,若沒有,則需作出該直線,?紤]三角形的中位線、平行四邊形的對(duì)邊或過(guò)平行線分線段成比例等;(1.使用空間向量求解空間角的關(guān)鍵是建立空間直角坐標(biāo)系后,將空間角轉(zhuǎn)化為向量的運(yùn)算,然后借助于直線的方向向量和平面的法向量解決立體幾何中的計(jì)算問(wèn)題.在角的問(wèn)題中,線面角和二面角是重點(diǎn).2.注意角的范圍,如異面直線所成角的范圍是,線面角的范圍是,二面角的范圍是.

試題解析:()證明:,.

,的中點(diǎn),

,

四邊形是平行四邊形,. 2

平面,平面平面. 4

)解平面,平面平面,

,

,兩兩垂直.

以點(diǎn)E為坐標(biāo)原點(diǎn),以所在直線分別為軸建立如圖的空間直角坐標(biāo)系. 6

由已知得,00,2),2,0,0),

24,0),03,0),02,2). 7

由已知得是平面的法向量. 8

設(shè)平面的法向量為,

,

,即,令,. 10

設(shè)二面角的大小為,由圖知為鈍角,

二面角的余弦值為12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,圓軸負(fù)半軸交于點(diǎn),過(guò)點(diǎn)的直線分別與圓交于兩點(diǎn).

1)過(guò)點(diǎn)作圓的兩條切線,切點(diǎn)分別為,求;

2)若,求證:直線過(guò)定點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若關(guān)于的方程恰有兩個(gè)不相等的實(shí)數(shù)根, 則實(shí)數(shù)的取值范圍是

A. B. , C. D. ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△中, 分別為, 的中點(diǎn), 的中點(diǎn), 將△沿折起到△的位置,使得平面平面, 的中點(diǎn)如圖2

1求證: 平面

2求證:平面平面;

3線段上是否存在點(diǎn),使得平面?說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)用五點(diǎn)法作函數(shù)的圖象;

2)說(shuō)出此圖象是由的圖象經(jīng)過(guò)怎樣的變化得到的;

3)求此函數(shù)的對(duì)稱軸、對(duì)稱中心、單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有下列命題:①若,則;②若,則存在唯一實(shí)數(shù),使得;③若,則;④若,且的夾角為鈍角,則;⑤若平面內(nèi)定點(diǎn)滿足,則為正三角形.其中正確的命題序號(hào)為 ________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,+∞)上單調(diào)遞減的函數(shù)是( )

A.y=x2B.C.y=2|x|D.y=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在直三棱柱ABC A1B1C1中,已知AC⊥BC,BC=CC1,設(shè)AB1的中點(diǎn)為D,B1C∩BC1=E.

(1)求證:DE∥平面AA1C1C;

(2) 求證:BC1⊥AB1;

(3)設(shè)AC=BC=CC1 =1,求銳二面角A- B1C- A1的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),

1)當(dāng)時(shí),求函數(shù)的極小值;

2)討論函數(shù)零點(diǎn)的個(gè)數(shù);

3)若對(duì)任意的, 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案