【題目】某糕點(diǎn)房推出一類(lèi)新品蛋糕,該蛋糕的成本價(jià)為4元,售價(jià)為8元.受保質(zhì)期的影響,當(dāng)天沒(méi)有銷(xiāo)售完的部分只能銷(xiāo)毀.經(jīng)過(guò)長(zhǎng)期的調(diào)研,統(tǒng)計(jì)了一下該新品的日需求量.現(xiàn)將近期一個(gè)月(30天)的需求量展示如下:

日需求量x個(gè)

20

30

40

50

天數(shù)

5

10

10

5

(1)從這30天中任取兩天,求兩天的日需求量均為40個(gè)的概率.

(2)以上表中的頻率作為概率,列出日需求量的分布列,并求該月的日需求量的期望.

(3)根據(jù)(2)中的分布列求得當(dāng)該糕點(diǎn)房一天制作35個(gè)該類(lèi)蛋糕時(shí),對(duì)應(yīng)的利潤(rùn)的期望值為;現(xiàn)有員工建議擴(kuò)大生產(chǎn)一天45個(gè),求利用利潤(rùn)的期望值判斷此建議該不該被采納.

【答案】(1);(2);(3)此建議不該被采納.

【解析】

(1)直接根據(jù)對(duì)應(yīng)關(guān)系求概率即可;

(2)列出日需求量的分布列的表,根據(jù)分布列的表,用數(shù)學(xué)期望的公式求解即可;

(3)列出利潤(rùn)的分布列的表,根據(jù)分布列的表,用數(shù)學(xué)期望的公式求解,然后根據(jù)兩個(gè)期望值的對(duì)比,來(lái)判斷此建議該不該被采納.

(1)從這30天中任取兩天,兩天的日需求量均為40個(gè)的概率為

(2)日需求量的分布列為

日需求量x個(gè)

20

30

40

50

概率

日需求量的期望

(3)設(shè)該糕點(diǎn)房制作45個(gè)蛋糕對(duì)應(yīng)的利潤(rùn)為,對(duì)應(yīng)的分布列如下:

利潤(rùn)y(元)

60

140

180

概率

利潤(rùn)的期望

根據(jù)兩個(gè)期望值的對(duì)比,,所以此建議不該被采納.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】張軍在網(wǎng)上經(jīng)營(yíng)了一家干果店,銷(xiāo)售的干果中有松子、開(kāi)心果、腰果、核桃,價(jià)格依次為120/千克、80/千克、70/千克、40/千克.為了增加銷(xiāo)量,張軍對(duì)以上四種干果進(jìn)行促銷(xiāo),若一次性購(gòu)買(mǎi)干果的總價(jià)達(dá)到150元,顧客就少付x(xZ)元,每筆訂單顧客在網(wǎng)上支付成功后,張軍會(huì)得到支付款的80%.

①當(dāng)x15時(shí),顧客一次性購(gòu)買(mǎi)松子和腰果各1千克,需要支付_________________元;

在促銷(xiāo)活動(dòng)中,為保證張軍每筆訂單得到的金額均不低于促銷(xiāo)的總價(jià)的70%,則x的最大值為___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,圓.

(1)若拋物線的焦點(diǎn)在圓上,且和圓 的一個(gè)交點(diǎn),求

(2)若直線與拋物線和圓分別相切于點(diǎn),求的最小值及相應(yīng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某池塘里浮萍的面積(單位:)與時(shí)間(單位:月)的關(guān)系為.關(guān)于下列說(shuō)法正確的是(

A.浮萍每月的增長(zhǎng)率為

B.浮萍每月增加的面積都相等

C.個(gè)月時(shí),浮萍面積不超過(guò)

D.若浮萍蔓延到、所經(jīng)過(guò)的時(shí)間分別是,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在多面體底面是梯形,四邊形是正方形,,,

(1)求證平面平面;

(2)設(shè)為線段上一點(diǎn),求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年3月智能共享單車(chē)項(xiàng)目正式登陸某市,兩種車(chē)型“小綠車(chē)”、“小黃車(chē)”采用分時(shí)段計(jì)費(fèi)的方式,“小綠車(chē)”每30分鐘收費(fèi)不足30分鐘的部分按30分鐘計(jì)算;“小黃車(chē)”每30分鐘收費(fèi)1元不足30分鐘的部分按30分鐘計(jì)算有甲、乙、丙三人相互獨(dú)立的到租車(chē)點(diǎn)租車(chē)騎行各租一車(chē)一次設(shè)甲、乙、丙不超過(guò)30分鐘還車(chē)的概率分別為,,三人租車(chē)時(shí)間都不會(huì)超過(guò)60分鐘甲、乙均租用“小綠車(chē)”,丙租用“小黃車(chē)”.

求甲、乙兩人所付的費(fèi)用之和等于丙所付的費(fèi)用的概率;

2設(shè)甲、乙、丙三人所付的費(fèi)用之和為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地某路無(wú)人駕駛公交車(chē)發(fā)車(chē)時(shí)間間隔(單位:分鐘)滿足,.經(jīng)測(cè)算,該路無(wú)人駕駛公交車(chē)載客量與發(fā)車(chē)時(shí)間間隔滿足:,其中

1)求,并說(shuō)明的實(shí)際意義;

2)若該路公交車(chē)每分鐘的凈收益(元),問(wèn)當(dāng)發(fā)車(chē)時(shí)間間隔為多少時(shí),該路公交車(chē)每分鐘的凈收益最大?并求每分鐘的最大凈收益.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在多面體,底面是梯形,四邊形是正方形,,,..

(1)求證平面平面;

(2)設(shè)為線段上一點(diǎn),試問(wèn)在線段上是否存在一點(diǎn)使得平面,若存在,試指出點(diǎn)的位置若不存在,說(shuō)明理由?

(3)(2)的條件下,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)的三邊,求證:方程有公共根的充要條件是.

查看答案和解析>>

同步練習(xí)冊(cè)答案