【題目】已知△ABC的三個(gè)內(nèi)角A,B,C的對邊分別是a,b,c,若向量 =(a+c,sinB), =(b﹣c,sinA﹣sinC),且 ∥ . (Ⅰ)求角A的大;
(Ⅱ)設(shè)函數(shù)f(x)=tanAsinωxcosωx﹣cosAcos2ωx(ω>0),已知其圖象的相鄰兩條對稱軸間的距離為 ,現(xiàn)將y=f(x)的圖象上各點(diǎn)向左平移 個(gè)單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的2倍,得到函數(shù)y=g(x)的圖象,求g(x)在[0,π]上的值域.
【答案】解:(Ⅰ)△ABC的三個(gè)內(nèi)角A,B,C的對邊分別是a,b,c, 若向量 =(a+c,sinB), =(b﹣c,sinA﹣sinC),且 ∥ ,
則(a+c)(sinA﹣sinC)﹣sinB(b﹣c)=0,即(a+c)(a﹣c)=b(b﹣c),
即 b2+c2﹣a2=bc,∴cosA= = ,∴A= .
(Ⅱ)設(shè)函數(shù)f(x)=tanAsinωxcosωx﹣cosAcos2ωx(ω>0)= sin2ωx﹣ cos2ωx=sin(2ωx﹣ ),
已知其圖象的相鄰兩條對稱軸間的距離為 = = ,∴ω=1,
現(xiàn)將y=f(x)=sin(2x﹣ )的圖象上各點(diǎn)向左平移 個(gè)單位,
可得 y=sin(2x+ )的圖象,再將所得圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的2倍,
得到函數(shù)y=g(x)=sin(x+ ) 的圖象,
在[0,π]上,x+ ∈[ , ],g(x)=sin(x+ )∈[﹣ ,1],
即g(x)在[0,π]上的值域?yàn)閇﹣ ,1].
【解析】(Ⅰ)利用兩個(gè)向量共線的性質(zhì)求得 b2+c2﹣a2=bc,再利用余弦定理求得cosA的值,可得A的值.(Ⅱ)利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,再利用正弦函數(shù)的定義域和值域,求得g(x)在[0,π]上的值域.
【考點(diǎn)精析】本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識點(diǎn),需要掌握圖象上所有點(diǎn)向左(右)平移個(gè)單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某學(xué)校組織的一次籃球總投籃訓(xùn)練中,規(guī)定每人最多投3次;在A處每投進(jìn)一球得3分,在B處每投進(jìn)一球得2分,如果前兩次得分之和超過3分即停止投籃,否則投第3次.某同學(xué)在A處的命中率q1為0.25,在B處的命中率為q2 . 該同學(xué)選擇先在A處投一球,以后都在B處投,用ξ表示該同學(xué)投籃的訓(xùn)練結(jié)束后所得的總分,其分布列為
ξ | 0 | 2 | 3 | 4 | 5 |
P | 0.03 | P1 | P2 | P3 | P4 |
(1)求q2的值;
(2)求隨機(jī)變量ξ的數(shù)學(xué)期望Eξ;
(3)試比較該同學(xué)選擇在B處投籃得分超過3分與選擇上述方式投籃得分超過3分的概率的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空中有一氣球,在它的正西方A點(diǎn)測得它的仰角為45°,同時(shí)在它南偏東60°的B點(diǎn),測得它的仰角為30°,已知A、B兩點(diǎn)間的距離為107米,這兩個(gè)觀測點(diǎn)均離地1米,則測量時(shí)氣球離地的距離是_____米.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某公司舉行的年終慶典活動(dòng)中,主持人利用隨機(jī)抽獎(jiǎng)軟件進(jìn)行抽獎(jiǎng):由電腦隨機(jī)生成一張如圖所示的33表格,其中1格設(shè)獎(jiǎng)300元,4格各設(shè)獎(jiǎng)200元,其余4格各設(shè)獎(jiǎng)100元,點(diǎn)擊某一格即顯示相應(yīng)金額.某人在一張表中隨機(jī)不重復(fù)地點(diǎn)擊3格,記中獎(jiǎng)的總金額為X元.
(1)求概率;
(2)求的概率分布及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】A市某機(jī)構(gòu)為了調(diào)查該市市民對我國申辦2034年足球世界杯的態(tài)度,隨機(jī)選取了140位市民進(jìn)行調(diào)查,調(diào)查結(jié)果統(tǒng)計(jì)如下:
支持 | 不支持 | 總計(jì) | |
男性市民 | 60 | ||
女性市民 | 50 | ||
合計(jì) | 70 | 140 |
(I)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(II)利用(1)完成的表格數(shù)據(jù)回答下列問題:
(。能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為性別與支持申辦足球世界杯有關(guān);
(ⅱ)已知在被調(diào)查的支持申辦足球世界杯的男性市民中有5位退休老人,其中2位是教師,現(xiàn)從這5位退休老人中隨機(jī)抽取3人,求至多有1位老師的概率。
附:,其中
0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】七巧板是古代中國勞動(dòng)人民發(fā)明的一種中國傳統(tǒng)智力玩具,它由五塊等腰直角三角形,一塊正方形和一塊平行四邊形共七塊板組成.清陸以湉《冷廬雜識》卷一中寫道:近又有七巧圖,其式五,其數(shù)七,其變化之式多至千余.體物肖形,隨手變幻,蓋游戲之具,足以排悶破寂,故世俗皆喜為之.如圖是一個(gè)用七巧板拼成的正方形,若在此正方形中任取一點(diǎn),則此點(diǎn)取自陰影部分的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: + =1(a>b>0)的左、右焦點(diǎn)分別為F1 , F2 , O為坐標(biāo)原點(diǎn),點(diǎn)P(1, )在橢圓上,連接PF1交y軸于點(diǎn)Q,點(diǎn)Q滿足 = .直線l不過原點(diǎn)O且不平行于坐標(biāo)軸,l與橢圓C有兩個(gè)交點(diǎn)A,B. (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn)M( ,0),若直線l過橢圓C的右焦點(diǎn)F2 , 證明: 為定值;
(Ⅲ)若直線l過點(diǎn)(0,2),設(shè)N為橢圓C上一點(diǎn),且滿足 + =λ ,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)f(x)是定義在R上的偶函數(shù),f(x+1)為奇函數(shù),f(0)=0,當(dāng)x∈(0,1]時(shí),f(x)=log2x,則在區(qū)間(8,9)內(nèi)滿足方f(x)程f(x)+2=f( )的實(shí)數(shù)x為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司年會(huì)舉行抽獎(jiǎng)活動(dòng),每位員工均有一次抽獎(jiǎng)機(jī)會(huì).活動(dòng)規(guī)則如下:一只盒子里裝有大小相同的6個(gè)小球,其中3個(gè)白球,2個(gè)紅球,1個(gè)黑球,抽獎(jiǎng)時(shí)從中一次摸出3個(gè)小球,若所得的小球同色,則獲得一等獎(jiǎng),獎(jiǎng)金為300元;若所得的小球顏色互不相同,則獲得二等獎(jiǎng),獎(jiǎng)金為200元;若所得的小球恰有2個(gè)同色,則獲得三等獎(jiǎng),獎(jiǎng)金為100元.
(1)求小張?jiān)谶@次活動(dòng)中獲得的獎(jiǎng)金數(shù)的概率分布及數(shù)學(xué)期望;
(2)若每個(gè)人獲獎(jiǎng)與否互不影響,求該公司某部門3個(gè)人中至少有2個(gè)人獲二等獎(jiǎng)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com