【題目】空中有一氣球,在它的正西方A點(diǎn)測(cè)得它的仰角為45°,同時(shí)在它南偏東60°B點(diǎn),測(cè)得它的仰角為30°,已知A、B兩點(diǎn)間的距離為107米,這兩個(gè)觀測(cè)點(diǎn)均離地1米,則測(cè)量時(shí)氣球離地的距離是_____米.

【答案】1

【解析】

依據(jù)題意作出圖形,解三角形可得:ADPD,BDPD,利用已知及在ADB中利用余弦定理可得:,問題得解。

解:如圖:

PAD45°,∠PBD30°,∠ADB150°,AEDFBG1,

RtPAD中,ADPD,

RtPBD中,BDPD,

ADB中,由余弦定理得:AB2AD2+BD22ADBDcosADB,

1072PD2+3PD22PDPD),

7PD21072,∴PD,

∴測(cè)量時(shí)氣球離地的距離是1(米).

故答案為:1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點(diǎn)在橢圓C上.

(1)求C的方程;

(2)設(shè)直線l不經(jīng)過P2點(diǎn)且與C相交于AB兩點(diǎn).若直線P2A與直線P2B的斜率的和為–1,證明:l過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以為頂點(diǎn)的多面體中, 平面, 平面,

1)請(qǐng)?jiān)趫D中作出平面,使得,且,并說明理由;

2)求直線和平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】12分)已知等差數(shù)列{an}中,a1=1,a3=﹣3

)求數(shù)列{an}的通項(xiàng)公式;

)若數(shù)列{an}的前k項(xiàng)和Sk=﹣35,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列兩個(gè)命題:命題p1a,b∈(0,+∞),當(dāng)a+b=1時(shí), + =4;命題p2:函數(shù)y=ln 是偶函數(shù).則下列命題是真命題的是(
A.p1∧p2
B.p1∧(¬p2
C.(¬p1)∨p2
D.(¬p1)∨(¬p2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在平面直角坐標(biāo)系xOy中,圓C的方程為,且圓C與y軸交于M,N兩點(diǎn)(點(diǎn)N在點(diǎn)M的上方),直線與圓C交于A,B兩點(diǎn)。

(1)若,求實(shí)數(shù)k的值。

(2)設(shè)直線AM,直線BN的斜率分別為,若存在常數(shù)使得恒成立?若存在,求出a的值.若不存在請(qǐng)說明理由。

(3)若直線AM與直線BN相較于點(diǎn)P,求證點(diǎn)P在一條定直線上。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)是R上的偶函數(shù),當(dāng)x1 , x2∈(0,+∞)時(shí),都有(x1﹣x2)[f(x1)﹣f(x2)]<0.設(shè) ,則(
A.f(a)>f(b)>f(c)
B.f(b)>f(a)>f(c)
C.f(c)>f(a)>f(b)
D.f(c)>f(b)>f(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊分別是a,b,c,若向量 =(a+c,sinB), =(b﹣c,sinA﹣sinC),且 . (Ⅰ)求角A的大小;
(Ⅱ)設(shè)函數(shù)f(x)=tanAsinωxcosωx﹣cosAcos2ωx(ω>0),已知其圖象的相鄰兩條對(duì)稱軸間的距離為 ,現(xiàn)將y=f(x)的圖象上各點(diǎn)向左平移 個(gè)單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來的2倍,得到函數(shù)y=g(x)的圖象,求g(x)在[0,π]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)M的直角坐標(biāo)為(1,0),若直線l的極坐標(biāo)方程為 ρcos(θ+ )﹣1=0,曲線C的參數(shù)方程是 (t為參數(shù)).
(1)求直線l和曲線C的普通方程;
(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),求 +

查看答案和解析>>

同步練習(xí)冊(cè)答案