【題目】在復(fù)平面內(nèi),給出以下四個(gè)說(shuō)法:

①實(shí)軸上的點(diǎn)表示的數(shù)均為實(shí)數(shù);

②虛軸上的點(diǎn)表示的數(shù)均為純虛數(shù);

③互為共軛復(fù)數(shù)的兩個(gè)復(fù)數(shù)的實(shí)部相等,虛部互為相反數(shù);

④已知復(fù)數(shù)滿足,則在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)位于第四象限.

其中說(shuō)法正確的個(gè)數(shù)為(

A.B.C.D.

【答案】C

【解析】

根據(jù)復(fù)數(shù)的幾何意義可判斷出命題①②的正誤,根據(jù)共軛復(fù)數(shù)的概念判斷命題③的正誤,利用復(fù)數(shù)的除法求出復(fù)數(shù),結(jié)合復(fù)數(shù)的幾何意義可判斷出命題④的正誤.

對(duì)于命題①,由復(fù)數(shù)的幾何意義知,實(shí)軸上的點(diǎn)表示的數(shù)均為實(shí)數(shù),命題①正確;

對(duì)于命題②,原點(diǎn)在虛軸上,原點(diǎn)代表的數(shù)為零,不是純虛數(shù),命題②錯(cuò)誤;

對(duì)于命題③,互為共軛復(fù)數(shù)的兩個(gè)復(fù)數(shù)的實(shí)部相等,虛部互為相反數(shù),命題③正確;

對(duì)于命題④,由,得,所以,復(fù)數(shù)在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)在第四象限,命題④正確.

因此,正確的命題為①③④.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求的單調(diào)區(qū)間;

2)若函數(shù)在定義域內(nèi)是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在我們的教材必修一中有這樣一個(gè)問(wèn)題,假設(shè)你有一筆資金,現(xiàn)有三種投資方案供你選擇,這三種方案的回報(bào)如下:

方案一:每天回報(bào)元;

方案二:第一天回報(bào)元,以后每天比前一天多回報(bào)元;

方案三:第一天回報(bào)元,以后每天的回報(bào)比前一天翻一番.

記三種方案第天的回報(bào)分別為,.

1)根據(jù)數(shù)列的定義判斷數(shù)列,的類(lèi)型,并據(jù)此寫(xiě)出三個(gè)數(shù)列的通項(xiàng)公式;

2)小王準(zhǔn)備做一個(gè)為期十天的短期投資,他應(yīng)該選擇哪一種投資方案?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若,試判斷的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)若的兩個(gè)極值點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)在區(qū)間內(nèi)有兩個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍;

3)在(1)的基礎(chǔ)上,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)求當(dāng)處的切線的斜率最小時(shí),的解析式;

2)在(1)的條件下,是否總存在實(shí)數(shù)m,使得對(duì)任意的,總存在,使得成立?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知在極坐標(biāo)系中,點(diǎn),,是線段的中點(diǎn),以極點(diǎn)為原點(diǎn),極軸為軸的正半軸,并在兩坐標(biāo)系中取相同的長(zhǎng)度單位,建立平面直角坐標(biāo)系,曲線的參數(shù)方程是為參數(shù)).

(1)求點(diǎn)的直角坐標(biāo),并求曲線的普通方程;

(2)設(shè)直線過(guò)點(diǎn)交曲線兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=lnx,aR

1)若x2是函數(shù)fx)的極值點(diǎn),求曲線yfx)在點(diǎn)(1,f1))處的切線方程;

2)若x1時(shí),fx)>0,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案