(本小題滿分13分)
已知函數(shù)是定義在上的奇函數(shù).
(Ⅰ)求的值;
(Ⅱ)求函數(shù)的值域;
(Ⅲ)當時,恒成立,求實數(shù)的取值范圍.

(1)  (2) 函數(shù)的值域(3)

解析試題分析:.解:(Ⅰ)∵是奇函數(shù)


,
對任意恒成立,

(或者利用,求得,再驗證是奇函數(shù))                 …………………4分
(Ⅱ)∵
又∵, ∴
,
∴函數(shù)的值域                                      ……………………7分
(Ⅲ)由題意得,當時,
恒成立,
,∴,
)恒成立,                      ……………………9分
設(shè)
下證在當時是增函數(shù).
任取,則
                  …………………………11分
∴當時,是增函數(shù),
 

∴實數(shù)的取值范圍為.                       …………………………13分
考點:本試題考查了函數(shù)的性質(zhì)運用。
點評:解決該試題關(guān)鍵是對于函數(shù)奇偶性概念和單調(diào)性概念的運用,并能結(jié)合不等式 恒成立問題,分離參數(shù)思想求解參數(shù)的取值范圍。屬于中檔題。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(12分)已知函數(shù)是定義在上的偶函數(shù),已知當時,.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)求在區(qū)間上的值域。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)定義在上的函數(shù),,當時,.且對任意的。
(1)證明:
(2)證明:對任意的,恒有;
(3)證明:上的增函數(shù);
(4)若,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
已知函數(shù),且方程有兩個實根.
(1)求函數(shù)的解析式;
(2)設(shè),解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分16分)
已知函數(shù),若為定義在R上的奇函數(shù),則(1)求實數(shù)的值;(2)求函數(shù)的值域;(3)求證:在R上為增函數(shù);(4)若m為實數(shù),解關(guān)于的不等式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),
(1)求函數(shù)的最小正周期和單調(diào)遞減區(qū)間;
(2)求函數(shù)在區(qū)間上的最小值和最大值,并求出取得最值時的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是由滿足下述條件的函數(shù)構(gòu)成的集合:對任意
① 方程有實數(shù)根;② 函數(shù)的導數(shù)滿足
(Ⅰ)判斷函數(shù)是否是集合中的元素,并說明理由;
(Ⅱ)集合中的元素具有下面的性質(zhì):若的定義域為,則對于任意,都存在,使得等式成立.試用這一性質(zhì)證明:方程有且只有一個實數(shù)根;
(Ⅲ)對任意,且,求證:對于定義域中任意的,,,當,且時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

查看答案和解析>>

同步練習冊答案