【題目】某市在創(chuàng)建國家級衛(wèi)生城(簡稱“創(chuàng)衛(wèi)”)的過程中,相關部門需了解市民對“創(chuàng)衛(wèi)”工作的滿意程度,若市民滿意指數不低于0.8(注:滿意指數),“創(chuàng)衛(wèi)”工作按原方案繼續(xù)實施,否則需進一步整改.為此該部門隨機調查了100位市民,根據這100位市民給“創(chuàng)衛(wèi)”工作的滿意程度評分,按以下區(qū)間:,,,,,分為六組,得到如圖頻率分布直方圖:
(1)為了解部分市民給“創(chuàng)衛(wèi)”工作評分較低的原因,該部門從評分低于60分的市民中隨機選取2人進行座談,求這2人所給的評分恰好都在的概率;
(2)根據你所學的統(tǒng)計知識,判斷該市“創(chuàng)衛(wèi)”工作是否需要進一步整改,并說明理由.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x﹣a|+|x+2|.
(1)若a=1.解不等式f(x)≤x2﹣1;
(2)若a>0,b>0,c>0.且f(x)的最小值為4﹣b﹣c.求證:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學為了解中學生的課外閱讀時間,決定在該中學的1200名男生和800名女生中按分層抽樣的方法抽取20名學生,對他們的課外閱讀時間進行問卷調查.現在按課外閱讀時間的情況將學生分成三類:類(不參加課外閱讀),類(參加課外閱讀,但平均每周參加課外閱讀的時間不超過3小時),類(參加課外閱讀,且平均每周參加課外閱讀的時間超過3小時).調查結果如下表:
類 | 類 | 類 | |
男生 | 5 | 3 | |
女生 | 3 | 3 |
(1)求出表中,的值;
(2)根據表中的統(tǒng)計數據,完成下面的列聯表,并判斷是否有90%的把握認為“參加課外閱讀與否”與性別有關;
男生 | 女生 | 總計 | ||
不參加課外閱讀 | ||||
參加課外閱讀 | ||||
總計 |
P(K≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|2x+1|﹣2|x﹣m|,m∈N,且f(x)<3恒成立.
(1)求m的值;
(2)當,時,f(a)+f(b)=﹣2,證明:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】半正多面體(semiregular solid) 亦稱“阿基米德多面體”,是由邊數不全相同的正多邊形為面的多面體,體現了數學的對稱美.二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個正三角形和六個正方形為面的半正多面體.如圖所示,圖中網格是邊長為1的正方形,粗線部分是某二十四等邊體的三視圖,則該幾何體的體積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數方程為,以坐標原點為極點,軸非負半軸為極軸建立極坐標系,點為曲線上的動點,點在線段 的延長線上,且滿足,點的軌跡為.
(1)求曲線,的極坐標方程;
(2)設點的極坐標為,求面積的最小值。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com