精英家教網 > 高中數學 > 題目詳情

【題目】如圖所示,已知線段AB在平面α內,線段AC⊥α,線段BD⊥AB,線段DD′⊥α于D′,如果∠DBD=30°,AB=AC=BD=1,則CD的長為

【答案】2
【解析】解:線段AB在平面α內,線段AC⊥α,線段BD⊥AB,線段DD′⊥α,∠DBD′=30°,AB=AC=BD=1,
由題意可知: = ,
= = + + +
=12+12+12+212cos60°
=4.
∴所求C、D間的距離為:2.
所以答案是2.
【考點精析】根據題目的已知條件,利用空間中直線與平面之間的位置關系的相關知識可以得到問題的答案,需要掌握直線在平面內—有無數個公共點;直線與平面相交—有且只有一個公共點;直線在平面平行—沒有公共點.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數

(Ⅰ)若,求曲線在點處的切線方程;

(Ⅱ)若, 恒成立,求實數的取值范圍;

(Ⅲ)當時,討論函數的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知F為拋物線y2=x的焦點,點A,B在該拋物線上且位于x軸的兩側, =2(其中O為坐標原點),則△ABO與△AFO面積之和的最小值是(
A.2
B.3
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,點M、N分別為線段A1B、AC1的中點.

(1)求證:MN∥平面BB1C1C;
(2)若D在邊BC上,AD⊥DC1 , 求證:MN⊥AD.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓E: 的右焦點為F(3,0),過點F的直線交橢圓E于A、B兩點.若AB的中點坐標為(1,﹣1),則E的方程為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數(其中為常數且)在處取得極值.

(Ⅰ)當時,求的單調區(qū)間;

(Ⅱ)若上的最大值為1,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某種多面體玩具共有12個面,在其十二個面上分別標有數字1,2,3,…,12.若該玩具質地均勻,則拋擲該玩具后,任何一個數字所在的面朝上的概率均相等.

為檢驗某批玩具是否合格,制定檢驗標準為:多次拋擲該玩具,并記錄朝上的面上標記的數字,若各數字出現的頻率的極差不超過0.05.則認為該玩具合格.

(1)對某批玩具中隨機抽取20件進行檢驗,將每個玩具各面數字出現頻率的極差繪制成莖葉圖(如圖所示),試估計這批玩具的合格率;

(2)現有該種類玩具一個,將其拋擲100次,并記錄朝上的一面標記的數字,得到如下數據:

朝上面的數字

1

2

3

4

5

6

7

8

9

10

11

12

次數

9

7

8

6

10

9

9

8

10

9

7

8

1)試判定該玩具是否合格;

2)將該玩具拋擲一次,記事件:向上的面標記數字是完全平方數(能寫成整數的平方形式的數,如,9為完全平方數);事件:向上的面標記的數字不超過4.試根據上表中的數據,完成以下列聯表(其中表示的對立事件),并回答在犯錯誤的概率不超過0.01的前提下,能否認為事件與事件有關.

合計

合計

100

(參考公式及數據: ,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 的離心率 ,分別是橢圓的左、右頂點,點P是橢圓上的一點,直線PA、PB的傾斜角分別為α、β滿足tanα+tanβ=1,則直線PA的斜率為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合A=[a﹣3,a],函數 (﹣2≤x≤5)的單調減區(qū)間為集合B.
(1)若a=0,求(RA)∪(RB);
(2)若A∩B=A,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案