【題目】已知函數(shù),為自然對(duì)數(shù)的底數(shù)).

1)討論函數(shù)在定義域內(nèi)極值點(diǎn)的個(gè)數(shù);

2)設(shè)直線為函數(shù)的圖象上一點(diǎn)處的切線,證明:在區(qū)間上存在唯一的,使得直線與曲線相切.

【答案】1)當(dāng)時(shí),函數(shù)無(wú)極值點(diǎn),當(dāng)時(shí),函數(shù)有兩個(gè)極值點(diǎn)(2)證明見(jiàn)解析

【解析】

1)對(duì)函數(shù)求導(dǎo)得,令,分類(lèi)討論有無(wú)零點(diǎn)以及零點(diǎn)與、的相對(duì)位置即可得解;

2)由題意可得切線的方程可表示為,設(shè)直線與曲線相切于點(diǎn),由題意可得,進(jìn)而可得,由(1)中結(jié)論即可證明上存在唯一的根,即可得證.

1)由題意,

,

,

①當(dāng)時(shí),,

此時(shí),單調(diào)遞增,無(wú)極值點(diǎn);

②當(dāng)時(shí),即當(dāng)時(shí),

函數(shù)有兩個(gè)零點(diǎn),

,,

i)當(dāng)時(shí),

因?yàn)?/span>,

所以,

所以函數(shù)單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,此時(shí)函數(shù)有兩個(gè)極值點(diǎn);

ii)當(dāng)時(shí),因?yàn)?/span>,

所以,此時(shí),單調(diào)遞增,無(wú)極值點(diǎn).

綜上所述,當(dāng)時(shí),函數(shù)無(wú)極值點(diǎn),當(dāng)時(shí),函數(shù)有兩個(gè)極值點(diǎn).

2)證明:因?yàn)?/span>,所以切線的方程可表示為,

設(shè)直線與曲線相切于點(diǎn)

因?yàn)?/span>,所以

消去并整理得,

由(1)可知,當(dāng)時(shí),函數(shù)單調(diào)遞增,

,.

所以函數(shù)上有唯一的零點(diǎn),

又因?yàn)?/span>單調(diào)遞增,

所以方程上存在唯一的根,

故在區(qū)間上存在唯一的,使得直線與曲線相切.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線將矩形紙分為兩個(gè)直角梯形,將梯形沿邊翻折,如圖2,在翻折的過(guò)程中(平面和平面不重合),下面說(shuō)法正確的是

圖1 圖2

A.存在某一位置,使得平面

B.存在某一位置,使得平面

C.在翻折的過(guò)程中,平面恒成立

D.在翻折的過(guò)程中,平面恒成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大型公司為了切實(shí)保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次普查,為此需要抽驗(yàn)1000人的血樣進(jìn)行化驗(yàn),由于人數(shù)較多,檢疫部門(mén)制定了下列兩種可供選擇的方案.方案①:將每個(gè)人的血分別化驗(yàn),這時(shí)需要驗(yàn)1000.方案②:按個(gè)人一組進(jìn)行隨機(jī)分組,把從每組個(gè)人抽來(lái)的血混合在一起進(jìn)行檢驗(yàn),如果每個(gè)人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這個(gè)人的血只需檢驗(yàn)一次(這時(shí)認(rèn)為每個(gè)人的血化驗(yàn));否則,若呈陽(yáng)性,則需對(duì)這個(gè)人的血樣再分別進(jìn)行一次化驗(yàn),這樣,該組個(gè)人的血總共需要化驗(yàn).假設(shè)此次普查中每個(gè)人的血樣化驗(yàn)呈陽(yáng)性的概率為,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.

1)設(shè)方案②中,某組個(gè)人的每個(gè)人的血化驗(yàn)次數(shù)為,求的分布列;

2)設(shè),試比較方案②中,分別取2,3,4時(shí),各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗(yàn)次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓,右焦點(diǎn)為是斜率為的弦,的中點(diǎn)為,的垂直平分線交橢圓于,兩點(diǎn),的中點(diǎn)為.當(dāng)時(shí),直線的斜率為為坐標(biāo)原點(diǎn)).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)原點(diǎn)到直線的距離為,求的取值范圍;

3)若直線,直線的斜率滿足,判斷并證明是否為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20名學(xué)生某次數(shù)學(xué)考試成績(jī)(單位:分)的頻率分布直方圖如下:

(1)求頻率直方圖中a的值;

(2)分別求出成績(jī)落在[50,60)與[60,70)中的學(xué)生人數(shù);

(3)從成績(jī)?cè)赱50,70)的學(xué)生中人選2人,求這2人的成績(jī)都在[60,70)中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖是民航部門(mén)統(tǒng)計(jì)的某年春運(yùn)期間,六個(gè)城市售出的往返機(jī)票的平均價(jià)格(單位元),以及相比于上一年同期價(jià)格變化幅度的數(shù)據(jù)統(tǒng)計(jì)圖,以下敘述正確的是(

A.深圳的變化幅度最小,北京的平均價(jià)格最高

B.天津的往返機(jī)票平均價(jià)格變化最大

C.上海和廣州的往返機(jī)票平均價(jià)格基本相當(dāng)

D.相比于上一年同期,其中四個(gè)城市的往返機(jī)票平均價(jià)格在增加

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,長(zhǎng)為3的線段的兩端點(diǎn)分別在軸、軸上滑動(dòng),點(diǎn)為線段上的點(diǎn),且滿足.記點(diǎn)的軌跡為曲線.

1)求曲線的方程;

2)若點(diǎn)為曲線上的兩個(gè)動(dòng)點(diǎn),記,判斷是否存在常數(shù)使得點(diǎn)到直線的距離為定值?若存在,求出常數(shù)的值和這個(gè)定值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等級(jí)如下表:

從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測(cè)后得到如下的頻率分布直方圖:

(1)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品”的規(guī)定?

(2)在樣本中,按產(chǎn)品等級(jí)用分層抽樣的方法抽取8件,再?gòu)倪@8件產(chǎn)品中隨機(jī)抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;

(3)該企業(yè)為提高產(chǎn)品質(zhì)量,開(kāi)展了“質(zhì)量提升月”活動(dòng),活動(dòng)后再抽樣檢測(cè),產(chǎn)品質(zhì)量指標(biāo)值近似滿足,則“質(zhì)量提升月”活動(dòng)后的質(zhì)量指標(biāo)值的均值比活動(dòng)前大約提升了多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列五個(gè)命題,其中正確命題的個(gè)數(shù)為(

①命題,使得的否定是,均有;

②若正整數(shù)滿足,則

③在 ,的充要條件;

④一條光線經(jīng)過(guò)點(diǎn),射在直線上,反射后穿過(guò)點(diǎn),則入射光線所在直線的方程為;

⑤已知的三個(gè)零點(diǎn)分別為一橢圓、一雙曲線、一拋物線的離心率,則為定值.

A.2B.3C.4D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案