【題目】如圖1,平面五邊形ABCDE中,AB∥CD,∠BAD=90°,AB=2,CD=1,△ADE是邊長為2的正三角形.現(xiàn)將△ADE沿AD折起,得到四棱錐E﹣ABCD(如圖2),且DE⊥AB.
(Ⅰ)求證:平面ADE⊥平面ABCD;
(Ⅱ)求平面BCE和平面ADE所成銳二面角的大;
(Ⅲ)在棱AE上是否存在點(diǎn)F,使得DF∥平面BCE?若存在,求 的值;若不存在,請說明理由.
【答案】(Ⅰ)證明:由已知得AB⊥AD,AB⊥DE.
因為AD∩DE=D,所以AB⊥平面ADE.
又AB平面ABCD,所以平面ADE⊥平面ABCD
(Ⅱ)解:設(shè)AD的中點(diǎn)為O,連接EO.
因為△ADE是正三角形,所以EA=ED,所以EO⊥AD.
因為 平面ADE⊥平面ABCD,
平面ADE∩平面ABCD=AD,EO平面ADE,
所以EO⊥平面ABCD.
以O(shè)為原點(diǎn),OA所在的直線為x軸,在平面ABCD內(nèi)過O 垂直于AD的直線為y軸,OE所在的直線為z軸,
建立空間直角坐標(biāo)系O﹣xyz,如圖所示.
由已知,得E(0,0, ),B(1,2,0),C(﹣1,1,0).
所以 =(1,﹣1, ), =(2,1,0).
設(shè)平面BCE的法向量 =(x,y,z).
則 ,
令x=1,則 =(1,﹣2,﹣ ).
又平面ADE的一個法向量 =(0,1,0),
所以cos< >= =﹣ .
所以平面BCE和平面ADE所成的銳二面角大小為 .
(Ⅲ)在棱AE上存在點(diǎn)F,使得DF∥平面BCE,此時 .
理由如下:
設(shè)BE的中點(diǎn)為G,連接CG,F(xiàn)G,
則FG∥AB,F(xiàn)G= .
因為AB∥CD,且 ,所以FG∥CD,且FG=CD,
所以四邊形CDFG是平行四邊形,所以DF∥CG.
因為CG平面BCE,且DF平面BCE,
所以DF∥平面BCE
【解析】(Ⅰ)推導(dǎo)出AB⊥AD,AB⊥DE,從而AB⊥平面ADE,由此能平面ADE⊥平面ABCD.(Ⅱ)設(shè)AD的中點(diǎn)為O,連接EO,推導(dǎo)出EO⊥AD,從而EO⊥平面ABCD.以O(shè)為原點(diǎn),OA所在的直線為x軸,在平面ABCD內(nèi)過O 垂直于AD的直線為y軸,OE所在的直線為z軸,建立空間直角坐標(biāo)系O﹣xyz,利用向量法能求出平面BCE和平面ADE所成的銳二面角大。á螅┰O(shè)BE的中點(diǎn)為G,連接CG,F(xiàn)G,推導(dǎo)出四邊形CDFG是平行四邊形,從而DF∥CG.由此能求出在棱AE上存在點(diǎn)F,使得DF∥平面BCE,此時 .
【考點(diǎn)精析】本題主要考查了平面與平面垂直的判定的相關(guān)知識點(diǎn),需要掌握一個平面過另一個平面的垂線,則這兩個平面垂直才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)表示三條不同的直線,表示三個不同的平面,給出下列四個命題:
①若,則;
②若,則;
③若為異面直線,,,則;
④若,則. 其中真命題的個數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某學(xué)校高三年級共800名男生中隨機(jī)抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于155cm和195cm之間,將測量結(jié)果按如下方式分成八組:第一組[155,160);第二組[160,165)、…、第八組[190,195],下圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.
(1)估計這所學(xué)校高三年級全體男生身高180cm以上(含180cm)的人數(shù);
(2)求第六組、第七組的頻率并補(bǔ)充完整頻率分布直方圖(如需增加刻度請在縱軸上標(biāo)記出數(shù)據(jù),并用直尺作圖);
(3)由直方圖估計男生身高的中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,直線交此拋物線于不同的兩個點(diǎn)、.
()當(dāng)直線過點(diǎn)時,證明,為定值.
()當(dāng)時,直線是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)坐標(biāo);反之,請說明理由.
()記,如果直線過點(diǎn),設(shè)線段的中點(diǎn)為,線段的中點(diǎn)為.問是否存在一條直線和一個定點(diǎn),使得點(diǎn)到它們的距離相等?若存在,求出這條直線和這個定點(diǎn);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是方程的兩根, 數(shù)列是公差為正的等差數(shù)列,數(shù)列的前項和為,且.
(1)求數(shù)列的通項公式;
(2)記,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與軸負(fù)半軸相交于點(diǎn),與軸正半軸相交于點(diǎn).
(1)若過點(diǎn)的直線被圓截得的弦長為,求直線的方程;
(2)若在以為圓心半徑為的圓上存在點(diǎn),使得 (為坐標(biāo)原點(diǎn)),求的取值范圍;
(3)設(shè)是圓上的兩個動點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為,點(diǎn)關(guān)于軸的對稱點(diǎn)為,如果直線與軸分別交于和,問是否為定值?若是求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于n∈N* , 若數(shù)列{xn}滿足xn+1﹣xn>1,則稱這個數(shù)列為“K數(shù)列”.
(Ⅰ)已知數(shù)列:1,m+1,m2是“K數(shù)列”,求實數(shù)m的取值范圍;
(Ⅱ)是否存在首項為﹣1的等差數(shù)列{an}為“K數(shù)列”,且其前n項和Sn滿足 ?若存在,求出{an}的通項公式;若不存在,請說明理由;
(Ⅲ)已知各項均為正整數(shù)的等比數(shù)列{an}是“K數(shù)列”,數(shù)列 不是“K數(shù)列”,若 ,試判斷數(shù)列{bn}是否為“K數(shù)列”,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若存在成立,則稱的不動點(diǎn).如果函數(shù)
有且只有兩個不動點(diǎn)0,2,且
(1)求函數(shù)的解析式;
(2)已知各項不為零的數(shù)列,求數(shù)列通項;
(3)如果數(shù)列滿足,求證:當(dāng)時,恒有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(滿分12分)學(xué)習(xí)雷鋒精神前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,學(xué)習(xí)雷鋒精神時全修好;單位對學(xué)習(xí)雷鋒精神前后各半年內(nèi)餐椅的損壞情況作了一個大致統(tǒng)計,具體數(shù)據(jù)如下:
損壞餐椅數(shù) | 未損壞餐椅數(shù) | 總 計 | |
學(xué)習(xí)雷鋒精神前 | 50 | 150 | 200 |
學(xué)習(xí)雷鋒精神后 | 30 | 170 | 200 |
總 計 | 80 | 320 | 400 |
(Ⅰ)求:學(xué)習(xí)雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神是否有關(guān)?
(Ⅱ)請說明是否有97.5%以上的把握認(rèn)為損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神有關(guān)?
參考公式:,
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com