【題目】對(duì)于n∈N* , 若數(shù)列{xn}滿(mǎn)足xn+1﹣xn>1,則稱(chēng)這個(gè)數(shù)列為“K數(shù)列”.
(Ⅰ)已知數(shù)列:1,m+1,m2是“K數(shù)列”,求實(shí)數(shù)m的取值范圍;
(Ⅱ)是否存在首項(xiàng)為﹣1的等差數(shù)列{an}為“K數(shù)列”,且其前n項(xiàng)和Sn滿(mǎn)足 ?若存在,求出{an}的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)已知各項(xiàng)均為正整數(shù)的等比數(shù)列{an}是“K數(shù)列”,數(shù)列 不是“K數(shù)列”,若 ,試判斷數(shù)列{bn}是否為“K數(shù)列”,并說(shuō)明理由.
【答案】解:(Ⅰ)由題意得(m+1)﹣1>1,①m2﹣(m+1)>1,②
解①得 m>1;
解②得 m<﹣1或m>2.
所以m>2,故實(shí)數(shù)m的取值范圍是m>2.
(Ⅱ)假設(shè)存在等差數(shù)列{an}符合要求,設(shè)公差為d,則d>1,
由 a1=﹣1,得 ,.
由題意,得 對(duì)n∈N*均成立,
即(n﹣1)d<n.
①當(dāng)n=1時(shí),d∈R;
②當(dāng)n>1時(shí), ,
因?yàn)? ,
所以d≤1,與d>1矛盾,
故這樣的等差數(shù)列{an}不存在.
(Ⅲ)設(shè)數(shù)列{an}的公比為q,則 ,
因?yàn)閧an}的每一項(xiàng)均為正整數(shù),且an+1﹣an=anq﹣an=an(q﹣1)>1>0,
所以a1>0,且q>1.
因?yàn)閍n+1﹣an=q(an﹣an﹣1)>an﹣an﹣1 ,
所以在{an﹣an﹣1}中,“a2﹣a1”為最小項(xiàng).
同理,在 中,“ ”為最小項(xiàng).
由{an}為“K數(shù)列”,只需a2﹣a1>1,即 a1(q﹣1)>1,
又因?yàn)? 不是“K數(shù)列”,且“ ”為最小項(xiàng),所以 ,即 a1(q﹣1)≤2,
由數(shù)列{an}的每一項(xiàng)均為正整數(shù),可得 a1(q﹣1)=2,
所以a1=1,q=3或a1=2,q=2.
①當(dāng)a1=1,q=3時(shí), ,則 ,
令 ,則 ,
又 = ,
所以{cn}為遞增數(shù)列,即 cn>cn﹣1>cn﹣2>…>c1 ,
所以bn+1﹣bn>bn﹣bn﹣1>bn﹣1﹣bn﹣2>…>b2﹣b1 .
因?yàn)? ,
所以對(duì)任意的n∈N* , 都有bn+1﹣bn>1,
即數(shù)列{cn}為“K數(shù)列”.
②當(dāng)a1=2,q=2時(shí), ,則 .因?yàn)? ,
所以數(shù)列{bn}不是“K數(shù)列”.
綜上:當(dāng) 時(shí),數(shù)列{bn}為“K數(shù)列”,
當(dāng) 時(shí),數(shù)列{bn}不是“K數(shù)列”
【解析】(Ⅰ)由題意得(m+1)﹣1>1,m2﹣(m+1)>1,聯(lián)立解出即可得出.(Ⅱ)假設(shè)存在等差數(shù)列{an}符合要求,設(shè)公差為d,則d>1,由題意,得 對(duì)n∈N*均成立,化為(n﹣1)d<n.對(duì)n分類(lèi)討論解出即可得出.(Ⅲ)設(shè)數(shù)列{an}的公比為q,則 ,由題意可得:{an}的每一項(xiàng)均為正整數(shù),且an+1﹣an=anq﹣an=an(q﹣1)>1>0,可得a1>0,且q>1.由an+1﹣an=q(an﹣an﹣1)>an﹣an﹣1 , 可得在{an﹣an﹣1}中,“a2﹣a1”為最小項(xiàng).同理,在 中,“ ”為最小項(xiàng).再利用“K數(shù)列”,可得a1=1,q=3或a1=2,q=2.進(jìn)而得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的一個(gè)頂點(diǎn)為拋物線的頂點(diǎn), , 兩點(diǎn)都在拋物線上,且.
(1)求證:直線必過(guò)一定點(diǎn);
(2)求證: 面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù),若,則稱(chēng)為的“不動(dòng)點(diǎn)”;若,則稱(chēng)為的“穩(wěn)定點(diǎn)”.函數(shù)的“不動(dòng)點(diǎn)”和“穩(wěn)定點(diǎn)”的集合分別記為和,即,.
()設(shè)函數(shù),求集合和.
()求證:.
()設(shè)函數(shù),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,平面五邊形ABCDE中,AB∥CD,∠BAD=90°,AB=2,CD=1,△ADE是邊長(zhǎng)為2的正三角形.現(xiàn)將△ADE沿AD折起,得到四棱錐E﹣ABCD(如圖2),且DE⊥AB.
(Ⅰ)求證:平面ADE⊥平面ABCD;
(Ⅱ)求平面BCE和平面ADE所成銳二面角的大;
(Ⅲ)在棱AE上是否存在點(diǎn)F,使得DF∥平面BCE?若存在,求 的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的值域;
(2)當(dāng)時(shí),函數(shù)的圖象關(guān)于對(duì)稱(chēng),求函數(shù)的對(duì)稱(chēng)軸.
(3)若圖象上有一個(gè)最低點(diǎn),如果圖象上每點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)縮短到原來(lái)的倍,然后向左平移1個(gè)單位可得的圖象,又知的所有正根從小到大依次為,且,求的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= e﹣ax(a>0).
(1)當(dāng)a=2時(shí),求曲線y=f(x)在x= 處的切線方程;
(2)討論方程f(x)﹣1=0根的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱中,,,,分別為棱的中點(diǎn).
(1)求證:∥平面
(2)若異面直線與 所成角為,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,現(xiàn)在從4月份的30天中隨機(jī)挑選了5天進(jìn)行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
溫差x/℃ | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y/顆 | 23 | 25 | 30 | 26 | 16 |
(1)從這5天中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均不小于25”的概率;
(2) 若由線性回歸方程得到的估計(jì)數(shù)據(jù)與4月份所選5天的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的. 請(qǐng)根據(jù)4月7日,4月15日與4月21日這三天的數(shù)據(jù),求出關(guān)于的線性回歸方程,并判定所得的線性回歸方程是否可靠?
參考公式: ,
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知各項(xiàng)均為正數(shù)的數(shù)列的首項(xiàng), 是數(shù)列的前項(xiàng)和,且滿(mǎn)足:
.
(1)若成等比數(shù)列,求實(shí)數(shù)的值;
(2)若,求證:數(shù)列為等差數(shù)列;
(3)在(2)的條件下,求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com