已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
3
,直線l:y=x+2與以原點(diǎn)為圓心、橢圓C1的短半軸長(zhǎng)為半徑的圓相切.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)設(shè)橢圓C1的左焦點(diǎn)為F1,右焦點(diǎn)為F2,直線l1過(guò)點(diǎn)F1且垂直于橢圓的長(zhǎng)軸,動(dòng)直線l2垂直l1于點(diǎn)P,線段PF2的垂直平分線交l2于點(diǎn)M,求動(dòng)點(diǎn)M的軌跡C2的方程;
(Ⅲ)過(guò)橢圓C1的焦點(diǎn)F2作直線l與曲線C2交于A、B兩點(diǎn),當(dāng)l的斜率為
1
2
時(shí),直線l1上是否存在點(diǎn)M,使AM⊥BM?若存在,求出M的坐標(biāo),若不存在,說(shuō)明理由.
(Ⅰ)∵e=
3
3
,
e2=
c2
a2
=
a2-b2
a2
=
1
3
,
∴2a2=3b2
∵直線l:x-y+2=0與圓x2+y2=b2相切,
2
2
=b
b=
2
,b2=2

∴a2=3.
∴橢圓C1的方程是
x2
3
+
y2
2
=1
;
(Ⅱ)由(Ⅰ)知F1(-1,0),F(xiàn)2(1,0),所以l1:x=-1,設(shè)M(x,y),
∵|MP|=|MF2|,
|x-(-1)|=
(x-1)2+y2
化簡(jiǎn)得:y2=4x,
∴點(diǎn)M的軌跡C2的方程為y2=4x.
(Ⅲ)∵直線l的方程為x-2y-1=0,代入y2=4x,得y2-8y-4=0.
由韋達(dá)定理得y1+y2=8,y1y2=-4,設(shè)A(
y21
4
,y1),B(
y22
4
,y2)

設(shè)直線l1:x=-1上存在點(diǎn)M(-1,m),使得AM⊥BM,則
AM
BM
=0
,
(-1-
y21
4
,m-y1)•(-1-
y22
4
,m-y2)=0
,
∴16m2-16m(y1+y2)+4(y12+y22)+y12y22+16y1y2+16=0,
∴m2-8m+16=0,解得m=4,
∴準(zhǔn)線上存在點(diǎn)M(-1,4),使AM⊥BM.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的長(zhǎng)軸長(zhǎng)為4,離心率為
1
2
,F(xiàn)1,F(xiàn)2分別為其左右焦點(diǎn).一動(dòng)圓過(guò)點(diǎn)F2,且與直線x=-1相切.
(Ⅰ) (。┣髾E圓C1的方程;
(ⅱ)求動(dòng)圓圓心軌跡C的方程;
(Ⅱ)在曲線C上有四個(gè)不同的點(diǎn)M,N,P,Q,滿足
MF2
NF2
共線,
PF2
QF2
共線,且
PF2
MF2
=0
,求四邊形PMQN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
3
,直線l:x-y+
5
=0與橢圓C1相切.
(1)求橢圓C1的方程;
(2)設(shè)橢圓C1的左焦點(diǎn)為F1,右焦點(diǎn)為F2,直線l1過(guò)點(diǎn)F1且垂直與橢圓的長(zhǎng)軸,動(dòng)直線l2垂直于直線l1于點(diǎn)P,線段PF2的垂直平分線交l2于點(diǎn)M,求點(diǎn)M的軌跡C2的方程;
(3)若A(x1,2),B(x2,y2),C(x0,y0)是C2上不同的點(diǎn),且AB⊥BC,求實(shí)數(shù)y0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn)分別為F1,F(xiàn)2,右頂點(diǎn)為A,P是橢圓C1上任意一點(diǎn),設(shè)該雙曲線C2:以橢圓C1的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn),B是雙曲線C2在第一象限內(nèi)的任意一點(diǎn),且c=
a2-b2

(1)設(shè)
PF1
PF2
的最大值為2c2,求橢圓離心率;
(2)若橢圓離心率e=
1
2
時(shí),是否存在λ,總有∠BAF1=λ∠BF1A成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)與雙曲線C2:x2-
y2
4
=1有公共的焦點(diǎn),C2的一條漸近線與以C1的長(zhǎng)軸為直徑的圓相交于A,B兩點(diǎn).若C1恰好將線段AB三等分,則( 。
A、a2=
13
2
B、a2=3
C、b2=
1
2
D、b2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點(diǎn)與拋物線C2:y2=4x的焦點(diǎn)F重合,橢圓C1與拋物線C2在第一象限的交點(diǎn)為P,|PF|=
5
3

(1)求橢圓C1的方程;
(2)過(guò)點(diǎn)A(-1,0)的直線與橢圓C1相交于M、N兩點(diǎn),求使
FM
+
FN
=
FR
成立的動(dòng)點(diǎn)R的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案