若函數(shù)f(x)是定義在R上的周期為4的奇函數(shù),且f(1)=2,則f(-5)=
 
考點(diǎn):函數(shù)奇偶性的性質(zhì),函數(shù)的周期性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)周期性奇函數(shù)定義得出f(-5)=f(-1)=-f(1)=-2,即可求解答案.
解答: 解:∵函數(shù)f(x)是定義在R上的周期為4的奇函數(shù),且f(1)=2,
∴f(-5)=f(-1)=-f(1)=-2,
故答案為:-2
點(diǎn)評(píng):本題考查了函數(shù)的性質(zhì),運(yùn)奇函數(shù)的定義,周期性求解函數(shù)值,難度很小,屬于容易題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x>0,y>0,且
2
x
+
1
y
=1,若x+2y>m2+2m恒成立,則實(shí)數(shù)m的取值范圍是( 。
A、(0,2]
B、(0,2)
C、(-4,2)
D、(-2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知知函數(shù)f(x)=
x+1
|x|+1
,x∈R,則不等式f(x2-2x)<f(3x-4)的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)g(x)=
ax
x+1
(a∈R),f(x)=ln(x+1)+g(x).
(1)若函數(shù)g(x)過(guò)點(diǎn)(1,1),求函數(shù)f(x)的圖象在x=0處的切線方程;
(2)判斷函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是一個(gè)單調(diào)遞增的等差數(shù)列,且滿足a2a4=21,a1+a5=10,數(shù)列{cn}的前n項(xiàng)和為Sn=an+1(n∈N*),數(shù)列{bn}滿足bn=2n•cn
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(2sinωx,cos2ωx-sin2ωx),
n
=(
3
cosωx,1),其中ω>0,x∈R.若函數(shù)f(x)=
m
n
的最小正周期為π.
(Ⅰ)求ω的值.
(Ⅱ)在△ABC中,若f(B)=-2,BC=
3
,sinB=
3
sinA,求
BA
BC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角三角形中,三邊成等比數(shù)列,則公比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若|y-3|+(x+1)2=0,則(xy)2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=
x
x+a
(a≠0)與y=2x+1在x=b處相切,則a+b=(  )
A、1B、-1C、2D、-2

查看答案和解析>>

同步練習(xí)冊(cè)答案