【題目】已知橢圓C:的離心率為,短軸長為

求橢圓C的標(biāo)準(zhǔn)方程;

過橢圓C的左焦點(diǎn)F的直線l與橢圓C交于M,N兩點(diǎn),證明:原點(diǎn)O不在以MN為直徑的圓上.

【答案】(1)(2)見證明

【解析】

由題意得,又,求解得到a,b,c的值,代入橢圓方程即可求解.

直線l過拋物線C的焦點(diǎn),故設(shè)直線MN的方程為,聯(lián)立直線方程與橢圓方程,化為關(guān)于y的一元二次方程,利用根與系數(shù)的關(guān)系,假設(shè)原點(diǎn)O在以MN為直徑的圓上,則,即,即,代入計(jì)算可得,而上述關(guān)于m的方程顯然沒有實(shí)數(shù)解,故原點(diǎn)O不在以MN為直徑的圓上

解:由已知,得,,

,,

橢圓C的標(biāo)準(zhǔn)方程為,

證明:,

易知直線MN不能平行于x軸,

故設(shè)直線MN的方程為,設(shè)、

聯(lián)立方程,

,

若原點(diǎn)O在以MN為直徑的圓上,則,

,即,

,

,

而上述關(guān)于m的方程顯然沒有實(shí)數(shù)解.故原點(diǎn)O不在以MN為直徑的圓上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,四點(diǎn)中恰有三點(diǎn)在橢圓上.

1)求橢圓C的方程

2)橢圓C上是否存在不同的兩點(diǎn)M,N關(guān)于直線對(duì)稱?若存在,請(qǐng)求出直線MN的方程,若不存在,請(qǐng)說明理由.

3)設(shè)直線l不經(jīng)過點(diǎn)且與C相交于A,B兩點(diǎn),若直線與直線的斜率之和為1,求證直線l必過定點(diǎn),并求出這個(gè)定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高考改革是教育體制改革中的重點(diǎn)領(lǐng)域和關(guān)鍵環(huán)節(jié),全社會(huì)極其關(guān)注.近年來,在新高考改革中,打破文理分科的“”模式初露端倪.其中“”指必考科目語文、數(shù)學(xué)、外語,“”指考生根據(jù)本人興趣特長和擬報(bào)考學(xué)校及專業(yè)的要求,從物理、化學(xué)、生物、歷史、政治、地理六科中選擇門作為選考科目,其中語、數(shù)、外三門課各占分,選考科目成績采用“賦分制”,即原始分?jǐn)?shù)不直接用,而是按照學(xué)生分?jǐn)?shù)在本科目考試的排名來劃分等級(jí)并以此打分得到最后得分.假定省規(guī)定:選考科目按考生成績從高到低排列,按照占總體的,以此賦分分、分、分、分.為了讓學(xué)生們體驗(yàn)“賦分制”計(jì)算成績的方法,省某高中高一()班(共人)舉行了以此摸底考試(選考科目全考,單科全班排名,每名學(xué)生選三科計(jì)算成績),已知這次摸底考試中的物理成績(滿分分)頻率分布直方圖,化學(xué)成績(滿分分)莖葉圖如下圖所示,小明同學(xué)在這次考試中物理分,化學(xué)多分.

(1)求小明物理成績的最后得分;

(2)若小明的化學(xué)成績最后得分為分,求小明的原始成績的可能值;

(3)若小明必選物理,其他兩科在剩下的五科中任選,求小明此次考試選考科目包括化學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)安排4名畢業(yè)生到某企業(yè)的三個(gè)部門實(shí)習(xí),要求每個(gè)部門至少安排1人,其中甲大學(xué)生不能安排到部門工作,安排方法有______用數(shù)字作答

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,直線與圓交于 兩點(diǎn).

(1)求圓的直角坐標(biāo)方程及弦的長;

(2)動(dòng)點(diǎn)在圓上(不與, 重合),試求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的離心率為,右準(zhǔn)線方程為,分別是橢圓的左、右頂點(diǎn),過右焦點(diǎn)且斜率為的直線與橢圓相交于,兩點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程.

2)記、的面積分別為,若,求的值;

3)設(shè)線段的中點(diǎn)為,直線與右準(zhǔn)線相交于點(diǎn),記直線、的斜率分別為、,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】4個(gè)不同的紅球和6個(gè)不同的白球放入同一個(gè)袋中,現(xiàn)從中取出4個(gè)球.

1)若取出的紅球的個(gè)數(shù)不少于白球的個(gè)數(shù),則有多少不同的取法?

2)取出一個(gè)紅球記2分,取出一個(gè)白球記1分,若取出4個(gè)球所得總分不少于5分,則有多少種不同取法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)棱柱是正四棱柱的充要條件是(

A.底面是正方形,有兩個(gè)側(cè)面是矩形B.底面是正方形,有兩個(gè)側(cè)面垂直底面

C.底面是正方形,相鄰兩個(gè)側(cè)面是矩形D.每個(gè)側(cè)面都是全等的矩形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD與四邊形BDEF均為菱形,,且

求證:平面BDEF;

求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案