【題目】如圖,已知橢圓的離心率為,右準(zhǔn)線方程為,分別是橢圓的左、右頂點(diǎn),過(guò)右焦點(diǎn)且斜率為的直線與橢圓相交于兩點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程.

2)記、的面積分別為、,若,求的值;

3)設(shè)線段的中點(diǎn)為,直線與右準(zhǔn)線相交于點(diǎn),記直線、、的斜率分別為、,求的值.

【答案】1;(2;(3.

【解析】

1)設(shè)橢圓的焦距為,根據(jù)題意列出關(guān)于、的方程組,進(jìn)而可求出的值,由此可得出橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)點(diǎn),,根據(jù)題中三角形面積的比值,可得出,再由點(diǎn)在橢圓上,可求出點(diǎn)的坐標(biāo),即可求出直線的斜率;

3)依題意可知,點(diǎn)在橢圓上,根據(jù)點(diǎn)差法、三點(diǎn)共線、直線方程、斜率公式,化簡(jiǎn)整理即可得出的值.

1)設(shè)橢圓的焦距為,

依題意,,且,解得,,故.

所以橢圓的標(biāo)準(zhǔn)方程為;

2)設(shè)點(diǎn),.

據(jù)題意,,即,整理可得,所以.

代入坐標(biāo),可得,即.

又點(diǎn)在橢圓上,所以,解得.

所以直線的斜率;

3)依題意,點(diǎn)、在橢圓上,

所以,兩式相減,得

,所以,即,

所以直線的方程為,令,得,即.

所以.

又直線的方程為,與橢圓聯(lián)立方程組,

整理得,

所以,得.

所以點(diǎn)的坐標(biāo)為.

同理,點(diǎn)的坐標(biāo)為.

又點(diǎn)、、三點(diǎn)共線,

所以,整理得,

依題意,,,故.

可得,,即.

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠C=,,M,N分別是BC,AB的中點(diǎn),將△BMN沿直線MN折起,使二面角B'-MN-B的大小為,則B'N與平面ABC所成角的正切值是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A{x|x24ax+3a20a0},B{x|x2x6≥0},若xAxB的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】九章算術(shù)給出求羨除體積的“術(shù)”是:“并三廣,以深乘之,又以袤乘之,六而一”,其中的“廣”指羨除的三條平行側(cè)棱的長(zhǎng),“深”指一條側(cè)棱到另兩條側(cè)棱所在平面的距離,“袤”指這兩條側(cè)棱所在平行線之間的距離,用現(xiàn)代語(yǔ)言描述:在羨除中,,,,兩條平行線間的距離為h,直線到平面的距離為,則該羨除的體積為已知某羨除的三視圖如圖所示,則該羨除的體積為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C:的離心率為,短軸長(zhǎng)為

求橢圓C的標(biāo)準(zhǔn)方程;

過(guò)橢圓C的左焦點(diǎn)F的直線l與橢圓C交于M,N兩點(diǎn),證明:原點(diǎn)O不在以MN為直徑的圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)點(diǎn),(其中表示a、b中的較大數(shù))為兩點(diǎn)的切比雪夫距離”.

1)若,Q為直線上動(dòng)點(diǎn),求PQ兩點(diǎn)切比雪夫距離的最小值;

2)定點(diǎn),動(dòng)點(diǎn)滿足,請(qǐng)求出P點(diǎn)所在的曲線所圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,點(diǎn).

1)若線段的中垂線與圓相切,求實(shí)數(shù)的值;

2)過(guò)直線上的點(diǎn)引圓的兩條切線,切點(diǎn)為,若,則稱點(diǎn)好點(diǎn)”. 若直線上有且只有兩個(gè)好點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二項(xiàng)式 的展開(kāi)式.

(1)求展開(kāi)式中含項(xiàng)的系數(shù);

(2)如果第項(xiàng)和第項(xiàng)的二項(xiàng)式系數(shù)相等,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知小張每次射擊命中十環(huán)的概率都為40%,現(xiàn)采用隨機(jī)模擬的方法估計(jì)小張三次射擊恰有兩次命中十環(huán)的概率,先由計(jì)算器產(chǎn)生09之間取整數(shù)值的隨機(jī)數(shù),指定24,6,8表示命中十環(huán),01,35,79表示未命中十環(huán),再以每三個(gè)隨機(jī)數(shù)為一組,代表三次射擊的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):

321 421 292 925 274 632 802 478 598 663

531 297 396 021 406 318 235 113 507 965

據(jù)此估計(jì),小張三次射擊恰有兩次命中十環(huán)的概率為(

A.0.30B.0.35C.0.40D.0.45

查看答案和解析>>

同步練習(xí)冊(cè)答案