(12分)已知函數(shù)f(x)=lnx-(a≠0)
(1)若a=3,b=-2,求f(x)在[,e]的最大值;
(2)若b=2,f(x)存在單調(diào)遞減區(qū)間,求a的范圍.
(1)當且僅當x=1,f(x)max=f(1)=a-b=-+2= ;
(2) a的范圍(-1,0)(0,+)
本試題主要是考查了導數(shù)在研究函數(shù)中的運用。求解函數(shù)的最值和函數(shù)單調(diào)性的逆向運用。
(1)由于=,然后分析當a=3,b=-2,時的導數(shù),分別為正和負的取值范圍,得到單調(diào)性,然后求解極值,和最值。
(2)因為f(x)存在遞減區(qū)間,f′(x)<0有解那么即等價于ax2+2x-1>0有x>0的解,利用對參數(shù)a討論得到范圍。
解:(1) =-ax-b=-3x+2==-
 當時  f′(x)0;   1<xe     f′(x)<0
當且僅當x=1,f(x)max=f(1)=a-b=-+2=……5分
(2) = -ax-2=
f(x)存在遞減區(qū)間,f′(x)<0有解
ax2+2x-1>0有x>0的解…………7分
a>0,顯然滿足…………9分
a<0時,則△=4+4a>0且ax2+2x-1=0至少有一個正根,此時-1<a<0……11分
a的范圍(-1,0)(0,+) …………12分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)已知對任意成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù),其中常數(shù)
(Ⅰ)當時,求函數(shù)的極值點;
(Ⅱ)令,若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍;
(Ⅲ)設(shè)定義在D上的函數(shù)在點處的切線方程為時,若D內(nèi)恒成立,則稱P為函數(shù)的“特殊點”,請你探究當時,函數(shù)是否存在“特殊點”,若存在,請最少求出一個“特殊點”的橫坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)為常數(shù))
(1)若上單調(diào)遞增,且
(2)若f(x)在x=1和x=3處取得極值,且在x∈[-6,6]時,函數(shù)的圖象在直線
的下方,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知時的極值為0.
(1)求常數(shù)a,b的值;
(2)求的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)當a=﹣2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若g(x)= +1,+∞)上是單調(diào)函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f (x)=lnx.
(Ⅰ)函數(shù)g(x)=3x-2,若函數(shù)F(x)=f(x)+g(x),求函數(shù)F(x)的單調(diào)區(qū)間;
(Ⅱ)函數(shù)h(x)=,函數(shù)G(x)=h(x)·f(x),若對任意x∈(0,1),
G(x)<-2,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

f(x)是(0,+∞)上的非負可導函數(shù),且,對任意正數(shù)a,b,若a<b,
則(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)= x/4+ln(x-2)/(x-4),(1)求函數(shù)f)x)的定義域和極值;(2)若函數(shù)(fx)在區(qū)間[a2-5a,8-3a]上為增函數(shù),求實數(shù)a的取值范圍;(3)函數(shù)f(x)的圖象是否為中心對稱圖形?若是請指出對稱中心,并證明;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案