精英家教網 > 高中數學 > 題目詳情
已知關于x的方程sin2x+cosx+a=0有解,則a的取值范圍是( 。
A、[-1,1]
B、[-1,
5
4
]
C、[-
5
4
,1]
D、[-
5
4
,-1]
考點:二次函數在閉區(qū)間上的最值,正弦函數的定義域和值域
專題:函數的性質及應用
分析:利用參數分離法,將方程進行分離,利用二次函數的圖象和性質即可得到結論.
解答: 解:∵sin2x+cosx+a=0,
∴a=-sin2x-cosx=cos2x-1-cosx=(cosx-
1
2
2-
5
4
,
∵-1≤cosx≤1,
∴-
5
4
≤(cosx-
1
2
2-
5
4
≤1,
若方程有解,則-
5
4
≤a≤1,
故選:C
點評:本題主要考查三角函數圖象和性質,利用二次函數的圖象和性質即可得到結論.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

過點P(1,0)可以作曲線y=x3-ax2的兩條切線,則a的值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

在復平面內,復數
1-2i
i
對應的點位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數學 來源: 題型:

當x>0,y>0,
1
x
+
9
y
=1時,x+y的最小值為( 。
A、10B、12C、14D、16

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}首項為1,且滿足an+1=
n+1
n
an,那么an等于( 。
A、n
B、n+1
C、
n+1
n
D、
n
n+1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知
2y
x
+
8x
y
>1+2m(x>0,y>0)恒成立,則實數m的取值范圍是(  )
A、m>
7
2
B、m<
7
2
C、m<2
D、m>2

查看答案和解析>>

科目:高中數學 來源: 題型:

等差數列{an}中a1>0,S5=S8,則當Sn取最大值時n的值是( 。
A、6B、7C、6或7D、不存在

查看答案和解析>>

科目:高中數學 來源: 題型:

下面是一個2×2列聯表,則a-b的值等于( 。
y1 y2 總計
x1 c a 69
x2 b d f
總計 e 65 99
A、45B、35C、34D、25

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD,側面PAD⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,M為AP的中點.
(Ⅰ)求證:AD⊥PB;
(Ⅱ)求證:DM∥平面PCB;
(Ⅲ)求平面PAD與平面PBC所成銳二面角的余弦值.

查看答案和解析>>

同步練習冊答案