【題目】已知定義在R上的函數(shù)f(x)=2x
(1)若f(x)= ,求x的值;
(2)若2tf(2t)+mf(t)≥0對(duì)于t∈[1,2]恒成立,求實(shí)數(shù)m的取值范圍.

【答案】
(1)解:由題意:f(x)=2x 定義在R上的函數(shù),

當(dāng)x≤0時(shí),f(x)=0,無(wú)解

當(dāng)x>0時(shí),f(x)=2x

由f(x)= ,即:2x = ,

化簡(jiǎn):222x﹣32x﹣2=0

因式分解:(2x﹣2)(22x+2)=0

解得:解得2x=2或2x=﹣

∵2x>0,

故:x=1


(2)解:當(dāng)t∈[1,2]時(shí),

f(2t)= ,f(t)=

那么: )≥0

整理得:m(22t﹣1)≥﹣(24t﹣1)

∵22t﹣1>0,∴m≥﹣(22t+1)恒成立即可.

∵t∈[1,2],∴﹣(22t+1)∈[﹣17,﹣5].

要使m≥﹣(22t+1)恒成立,只需m≥﹣5

故:m的取值范圍是[﹣5,+∞)


【解析】(1)化簡(jiǎn)f(x)去掉絕對(duì)值,直接進(jìn)行帶值計(jì)算即可.(2)求出f(2t),f(t)帶入,構(gòu)造指數(shù)函數(shù),利用指數(shù)函數(shù)的圖象及性質(zhì)對(duì)t∈[1,2]恒成立求解.
【考點(diǎn)精析】本題主要考查了函數(shù)單調(diào)性的判斷方法的相關(guān)知識(shí)點(diǎn),需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各小題中,P是q的充要條件的是(08年山東理改編)
1)p:m<﹣2或m>6;q:y=x2+mx+m+3有兩個(gè)不同的零點(diǎn).
2)p: =1,q:y=f(x)是偶函數(shù).
3)p:cosα=cosβ,q:tanα=tanβ.
4)p:A∩B=A,q:CUBCUA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)= (a>0,b>0).
(1)當(dāng)a=b=1時(shí),證明:f(x)不是奇函數(shù);
(2)設(shè)f(x)是奇函數(shù),求a與b的值;
(3)在(2)的條件下,試證明函數(shù)f(x)的單調(diào)性,并解不等式f(1﹣m)+f(1+m2)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)=x2+a|x|+2,x∈R在區(qū)間[3,+∞)和[﹣2,﹣1]上均為增函數(shù),則實(shí)數(shù)a的取值范圍是(
A.[﹣ ,﹣3]
B.[﹣6,﹣4]
C.[﹣3,﹣2 ]
D.[﹣4,﹣3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)f(x)滿足f(0)=2和f(x+1)﹣f(x)=2x﹣1對(duì)任意實(shí)數(shù)x都成立.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)t∈[﹣1,3]時(shí),求y=f(2t)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y2=﹣x與直線y=k(x+1)(k≠0)相交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn).
(1)當(dāng)k= 時(shí),求|AB|的長(zhǎng);
(2)求證無(wú)論k為何值都有OA⊥OB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=cos2x+sinx
(1)求f( )的值;
(2)求f(x)在[﹣ , ]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓 過(guò)點(diǎn),其左、右焦點(diǎn)分別為,離心率, 是橢圓右準(zhǔn)線上的兩個(gè)動(dòng)點(diǎn),且

1)求橢圓的方程;

2)求的最小值;

3)以為直徑的圓是否過(guò)定點(diǎn)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=loga(1﹣x)+loga(x+3),(0<a<1).
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的最小值為﹣2,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案