【題目】已知函數(shù)f(x)=cos2x+sinx
(1)求f( )的值;
(2)求f(x)在[﹣ ]上的最值.

【答案】
(1)解:
(2)解:

∵x∈[﹣ , ],∴sinx∈[﹣1,1].

∴當 時,ymax= ;

當sinx=﹣1時,ymin=﹣1


【解析】(1)直接把x= 代入函數(shù)解析式求得f( )的值;(2)化余弦為正弦后配方,由x得范圍求得sinx的范圍,則f(x)在[﹣ , ]上的最值可求.
【考點精析】解答此題的關鍵在于理解同角三角函數(shù)基本關系的運用的相關知識,掌握同角三角函數(shù)的基本關系:;;(3) 倒數(shù)關系:,以及對三角函數(shù)的最值的理解,了解函數(shù),當時,取得最小值為;當時,取得最大值為,則,,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當時,求證: ,并指出等號成立的條件;

(Ⅱ)求證:對任意實數(shù),總存在實數(shù),有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直角坐標系xOy中,曲線C的參數(shù)方程為 (α為參數(shù),α∈[0,2π)),以原點為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρsinθ﹣ρcosθ=2.
(1)寫出直線l和曲線C的直角坐標方程;
(2)求直線l與曲線C交點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)=2x
(1)若f(x)= ,求x的值;
(2)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體ABCDEF中,DE⊥平面ABCD,AD∥BC,平面BCEF∩平面ADEF=EF,∠BAD=60°,AB=AD=2,DE=1.

(1)求證:BC∥EF;
(2)求三棱錐B﹣ADE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個結論,其中正確的是(
A.若 ,則a<b
B.“a=3“是“直線l1:a2x+3y﹣1=0與直線l2:x﹣3y+2=0垂直”的充要條件
C.在區(qū)間[0,1]上隨機取一個數(shù)x,sin 的值介于0到 之間的概率是
D.對于命題P:?x∈R使得x2+x+1<0,則?P:?x∈R均有x2+x+1>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設x,y滿足約束條件 ,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為12,則 + 的最小值為(
A.4
B.
C.1
D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)值域是(0,+∞)的是(
A.y=
B.y=( 12x
C.y=
D.y=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù).

(1)當, 時,求的單調減區(qū)間;

(2)時,函數(shù),若存在,使得恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案