【題目】下列各小題中,P是q的充要條件的是(08年山東理改編)
1)p:m<﹣2或m>6;q:y=x2+mx+m+3有兩個(gè)不同的零點(diǎn).
2)p: =1,q:y=f(x)是偶函數(shù).
3)p:cosα=cosβ,q:tanα=tanβ.
4)p:A∩B=A,q:CUBCUA.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答
(1)用反證法證明:已知實(shí)數(shù)a,b,c滿足a+b+c=1,求證:a、b、c中至少有一個(gè)數(shù)不大于
(2)用分析法證明: + >2 + .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)試討論函數(shù)的單調(diào)性;
(2)若不等式在區(qū)間上恒成立,求的取值范圍,并證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足,().
(1)求證:數(shù)列是等比數(shù)列;
(2)若滿足,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知6只小白鼠有1只被病毒感染,需要通過(guò)對(duì)其化驗(yàn)病毒來(lái)確定是否感染.下面是兩種化驗(yàn)方案:方案甲:逐個(gè)化驗(yàn),直到能確定感染為止.方案乙:將6只分為兩組,每組三個(gè),并將它們混合在一起化驗(yàn),若存在病毒,則表明感染在這三只當(dāng)中,然后逐個(gè)化驗(yàn),直到確定感染為止;若結(jié)果不含病毒,則在另外一組中逐個(gè)進(jìn)行化驗(yàn).
(1)求依據(jù)方案乙所需化驗(yàn)恰好為2次的概率.
(2)首次化驗(yàn)化驗(yàn)費(fèi)為10元,第二次化驗(yàn)化驗(yàn)費(fèi)為8元,第三次及其以后每次化驗(yàn)費(fèi)都是6元,列出方案甲所需化驗(yàn)費(fèi)用的分布列,并估計(jì)用方案甲平均需要體驗(yàn)費(fèi)多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱中, , , ,外接球的球心為,點(diǎn)是側(cè)棱上的一個(gè)動(dòng)點(diǎn).有下列判斷:
① 直線與直線是異面直線;② 一定不垂直;
③ 三棱錐的體積為定值; ④的最小值為.
其中正確的個(gè)數(shù)是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求證: ,并指出等號(hào)成立的條件;
(Ⅱ)求證:對(duì)任意實(shí)數(shù),總存在實(shí)數(shù),有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,其中b是常數(shù).
(1)若y=f(x)是奇函數(shù),求b的值;
(2)求證:y=f(x)是單調(diào)增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=2x﹣ .
(1)若f(x)= ,求x的值;
(2)若2tf(2t)+mf(t)≥0對(duì)于t∈[1,2]恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com