【題目】在貫徹中共中央國務(wù)院關(guān)于精準(zhǔn)扶貧政策的過程中,某單位定點(diǎn)幫扶甲、乙兩個村各50戶貧困戶.為了做到精準(zhǔn)幫扶,工作組對這100戶村民的年收入情況、勞動能力情況、子女受教育情況、危舊房情況、患病情況等進(jìn)行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標(biāo),制成下圖其中”表示甲村貧困戶,“”表示乙村貧困戶.

,則認(rèn)定該戶為“絕對貧困戶”,若,則認(rèn)定該戶為“相對貧困戶”,若,則認(rèn)定該戶為“低收入戶”;

則認(rèn)定該戶為“今年能脫貧戶”,否則為“今年不能脫貧戶”.

1)從甲村50戶中隨機(jī)選出一戶,求該戶為“今年不能脫貧的絕對貧困戶的概率;

2)若從所有“今年不能脫貧的非絕對貧困戶”中選3戶,用表示所選3戶中乙村的戶數(shù),求的分布列和數(shù)學(xué)期望;

3)試比較這100戶中,甲、乙兩村指標(biāo)的方差的大。ㄖ恍鑼懗鼋Y(jié)論).

【答案】(1)0.1;(2)見解析;3見解析.

【解析】試題分析:(1)處于100以下”圖標(biāo)共5個,由古典概型可求。(2由圖知,“今年不能脫貧的非絕對貧困戶”有10戶,其中甲村6戶,乙村4戶,, 的可能值為0,1,2,3.

寫出超幾何分布列。(3)數(shù)據(jù)越集中方差越小,數(shù)據(jù)越分散方差越大,顯然乙村更集中。

試題解析:(1)由圖知,在甲村50戶中,“今年不能脫貧的絕對貧困戶”有5戶,

所以從甲村50戶中隨機(jī)選出一戶,該戶為“今年不能脫貧的絕對貧困戶”的概率為

(2)由圖知,“今年不能脫貧的非絕對貧困戶”有10戶,其中甲村6戶,乙村4戶,依題意,

的可能值為0,1,2,3.從而

,

, .

所以的分布列為:

的數(shù)學(xué)期望.

3100戶中甲村指標(biāo)的方差大于乙村指標(biāo)的方差.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線 為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為

(1)求曲線的普通方程和直線的直角坐標(biāo)方程;

(2)過點(diǎn)且與直線平行的直線, 兩點(diǎn),求點(diǎn), 兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線是過點(diǎn),傾斜角為的直線,以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是

(Ⅰ)求曲線的普通方程和曲線的一個參數(shù)方程;

(Ⅱ)曲線與曲線相交于, 兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,DAC的中點(diǎn),四邊形BDEF是菱形,平面平面ABC,,

若點(diǎn)M是線段BF的中點(diǎn),證明:平面AMC;

求平面AEF與平面BCF所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的長軸為,過點(diǎn)的直線軸垂直,橢圓的離心率, 為橢圓的左焦點(diǎn),.

Ⅰ)求此橢圓的方程;

(Ⅱ設(shè)是此橢圓上異于的任意一點(diǎn), , 為垂足,延長到點(diǎn)使得.連接并延長交直線于點(diǎn), 的中點(diǎn),判定直線與以為直徑的圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)在區(qū)間上的最大值是最小值是

A. 有關(guān),且與有關(guān) B. 有關(guān),但與無關(guān)

C. 無關(guān),且與無關(guān) D. 無關(guān),但與有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M的圓心Mx軸上,半徑為,直線被圓M截得的弦長為,且圓心M在直線l的上方.

1)求圓的方程;

2)設(shè),,若圓M的內(nèi)切圓,求ACBC邊所在直線的斜率(用t表示);

3)在(2)的條件下求的面積S的最大值及對應(yīng)的t.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)如圖在三棱錐中, 分別為棱的中點(diǎn),已知,

求證(1)直線平面

(2)平面 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)若函數(shù)R上的單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍;

2)設(shè), 的導(dǎo)函數(shù).

①若對任意的,求證:存在使

②若,求證:

查看答案和解析>>

同步練習(xí)冊答案