【題目】在平面直角坐標(biāo)系中,已知曲線 為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為

(1)求曲線的普通方程和直線的直角坐標(biāo)方程;

(2)過點(diǎn)且與直線平行的直線 兩點(diǎn),求點(diǎn), 兩點(diǎn)的距離之積.

【答案】(1), ;(2) .

【解析】試題分析:(1)利用三角恒等式消元法消去參數(shù)可求得求圓的普通方程,將直線的極坐標(biāo)方程利用兩角和的余弦定理展開,根據(jù)利用 即可得直線的直角坐標(biāo)方程; (2)直線的參數(shù)方程代入圓的直角坐標(biāo)方程利用韋達(dá)定理、直線參數(shù)方程的幾何意義即可求點(diǎn)兩點(diǎn)的距離之積.

試題解析:(1)曲線化為普通方程為

,得,

所以直線的直角坐標(biāo)方程為

(2)直線的參數(shù)方程為為參數(shù)),

代入化簡得,

設(shè), 兩點(diǎn)所對應(yīng)的參數(shù)分別為, ,則,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)入射光線沿直線y=2x+1射向直線y=x,則被y=x反射后,反射光線所在的直線方程是(
A.x﹣2y﹣1=0
B.x﹣2y+1=0
C.3x﹣2y+1=0
D.x+2y+3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(1)當(dāng)時(shí),求證 ;

(2)對任意,存在,使成立,求的取值范圍.(其中是自然對數(shù)的底數(shù),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, 的導(dǎo)函數(shù).

Ⅰ)求的極值;

Ⅱ)若時(shí)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓心在直線y=4x上,且與直線l:x+y﹣2=0相切于點(diǎn)P(1,1).
(1)求圓的方程;
(2)直線kx﹣y+3=0與該圓相交于A、B兩點(diǎn),若點(diǎn)M在圓上,且有向量 (O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0),上的點(diǎn)M(1,m)到其焦點(diǎn)F的距離為2,
(1)求C的方程;并求其準(zhǔn)線方程;
(2)已知A (1,﹣2),是否存在平行于OA(O為坐標(biāo)原點(diǎn))的直線L,使得直線L與拋物線C有公共點(diǎn),且直線OA與L的距離等于 ?若存在,求直線L的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖給出的是計(jì)算 的值的一個(gè)程序框圖,判斷其中框內(nèi)應(yīng)填入的條件是(

A.i>10
B.i<10
C.i>20
D.i<20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|2x+1|﹣|x﹣4|.
(1)解不等式f(x)>0;
(2)若f(x)+3|x﹣4|>m對一切實(shí)數(shù)x均成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=loga(1+x),g(x)=loga(1+kx),其中a>0且a≠1. (Ⅰ)當(dāng)k=﹣2時(shí),求函數(shù)h(x)=f(x)+g(x)的定義域;
(Ⅱ)若函數(shù)H(x)=f(x)﹣g(x)是奇函數(shù)(不為常函數(shù)),求實(shí)數(shù)k的值.

查看答案和解析>>

同步練習(xí)冊答案