【題目】(題文)如圖在三棱錐中, 分別為棱的中點(diǎn),已知,

求證(1)直線平面;

(2)平面 平面.

【答案】證明見解析.

【解析】試題分析:(1)本題證明線面平行,根據(jù)其判定定理,需要在平面內(nèi)找到一條與平行的直線,由于題中中點(diǎn)較多,容易看出,然后要交待在平面外,在平面內(nèi),即可證得結(jié)論;(2)要證兩平面垂直,一般要證明一個平面內(nèi)有一條直線與另一個平面垂直,由(1)可得,因此考慮能否證明與平面內(nèi)的另一條與相交的直線垂直,由已知三條線段的長度,可用勾股定理證明,因此要找的兩條相交直線就是,由此可得線面垂直.

試題解析:(1)由于分別是的中點(diǎn),則有,又,,所以

2)由(1,又,所以,又中點(diǎn),所以,,所以,所以,是平面內(nèi)兩條相交直線,所以,又 ,所以平面 平面

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的極值;

(2)若不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在貫徹中共中央國務(wù)院關(guān)于精準(zhǔn)扶貧政策的過程中,某單位定點(diǎn)幫扶甲、乙兩個村各50戶貧困戶.為了做到精準(zhǔn)幫扶,工作組對這100戶村民的年收入情況、勞動能力情況、子女受教育情況、危舊房情況、患病情況等進(jìn)行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標(biāo),制成下圖,其中”表示甲村貧困戶,“”表示乙村貧困戶.

,則認(rèn)定該戶為“絕對貧困戶”,若,則認(rèn)定該戶為“相對貧困戶”,若則認(rèn)定該戶為“低收入戶”;

,則認(rèn)定該戶為“今年能脫貧戶”,否則為“今年不能脫貧戶”.

1)從甲村50戶中隨機(jī)選出一戶,求該戶為“今年不能脫貧的絕對貧困戶的概率;

2)若從所有“今年不能脫貧的非絕對貧困戶”中選3戶,用表示所選3戶中乙村的戶數(shù),求的分布列和數(shù)學(xué)期望;

3)試比較這100戶中,甲、乙兩村指標(biāo)的方差的大。ㄖ恍鑼懗鼋Y(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個計算裝置有兩個數(shù)據(jù)輸入端口I,II與一個運(yùn)算結(jié)果輸出端口III,當(dāng)I,II分別輸入正整數(shù)時,輸出結(jié)果記為且計算裝置運(yùn)算原理如下:

I,II分別輸入

I輸入固定的正整數(shù)II輸入的正整數(shù)增大則輸出的結(jié)果比原來增大

II輸入I輸入正整數(shù)增大則輸出結(jié)果為原來的倍.則(1) = 為正整數(shù));(2)1fm,1=__,(2)若由fm,1)得出fmn),則滿足fmn=30的平面上的點(diǎn)(mn)的個數(shù)是__

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對某城市居民家庭年收入(萬元)和年“享受資料消費(fèi)”(萬元)進(jìn)行統(tǒng)計分析,得數(shù)據(jù)如表所示.

6

8

10

12

2

3

5

6

(1)請根據(jù)表中提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程.

(2)若某家庭年收入為18萬元,預(yù)測該家庭年“享受資料消費(fèi)”為多少?

(參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從高一年級參加期末考試的學(xué)生中抽出50名學(xué)生,并統(tǒng)計了他們的數(shù)學(xué)成績(滿分為100分),將數(shù)學(xué)成績進(jìn)行分組,并根據(jù)各組人數(shù)制成如下頻率分布表:

(1)寫出的值,并估計本次考試全年級學(xué)生的數(shù)學(xué)平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)現(xiàn)從成績在內(nèi)的學(xué)生中任選出兩名同學(xué),從成績在內(nèi)的學(xué)生中任選一名同學(xué),共三名同學(xué)參加學(xué)習(xí)習(xí)慣問卷調(diào)查活動.若同學(xué)的數(shù)學(xué)成績?yōu)?3分,同學(xué)的數(shù)學(xué)成績?yōu)?/span>分,求兩同學(xué)恰好都被選出的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高二奧賽班N名學(xué)生的物理測評成績(滿分120分)分布直方圖如下,已知分?jǐn)?shù)在100~110的學(xué)生數(shù)有21人。

(Ⅰ)求總?cè)藬?shù)N和分?jǐn)?shù)在110~115分的人數(shù)n;

(Ⅱ)現(xiàn)準(zhǔn)備從分?jǐn)?shù)在110~115分的n名學(xué)生(女生占)中任選2人,求其中恰好含有一名女生的概率;

(Ⅲ)為了分析某個學(xué)生的學(xué)習(xí)狀態(tài),對其下一階段的學(xué)習(xí)提供指導(dǎo)性建議,對他前7次考試的數(shù)學(xué)成績x(滿分150分),物理成績y進(jìn)行分析,下面是該生7次考試的成績。

數(shù)學(xué)

88

83

117

92

108

100

112

物理

94

91

108

96

104

101

106

已知該生的物理成績y與數(shù)學(xué)成績x是線性相關(guān)的,若該生的數(shù)學(xué)成績達(dá)到130分,請你估計他的物理成績大約是多少?

附:對于一組數(shù)據(jù)其回歸線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如圖所示的程序框圖,解答下列問題:

(1)求輸入的的值分別為時,輸出的的值;

(2)根據(jù)程序框圖,寫出函數(shù))的解析式;并求當(dāng)關(guān)于的方程有三個互不相等的實(shí)數(shù)解時,實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·全國Ⅱ卷)如圖,四棱錐PABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD,ABBCADBADABC90°,EPD的中點(diǎn).

(1)證明:直線CE∥平面PAB

(2)點(diǎn)M在棱PC上,且直線BM與底面ABCD所成角為45°,求二面角MABD的余弦值.

查看答案和解析>>

同步練習(xí)冊答案