【題目】設(shè)函數(shù)

1)若函數(shù)R上的單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍;

2)設(shè), 的導(dǎo)函數(shù).

①若對(duì)任意的,求證:存在使;

②若,求證:

【答案】(1) ;(2)①.證明見解析;②.證明見解析.

【解析】試題分析:(1由題意, 對(duì)恒成立,根據(jù),等價(jià)為對(duì)恒成立,即可求得得取值范圍;(2)①分別求得,若,則存在,使,從而得,取,則,即可證明;②不妨設(shè),令,則,由(1)知函數(shù)單調(diào)遞增,則從而,根據(jù),推出,只需證明成立,即只需證明成立,設(shè),求得函數(shù)的單調(diào)性,即可證明.

試題解析:(1)由題意, 對(duì)恒成立.

對(duì)恒成立,

,從而

2,則

,則存在,使,不合題意.

,則

此時(shí)

∴存在,使

②依題意,不妨設(shè),令,則

由(1)知函數(shù)單調(diào)遞增,則從而

下面證明,即證明,只要證明

設(shè),則恒成立.

單調(diào)遞減,故,從而得證.

,即

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在貫徹中共中央國(guó)務(wù)院關(guān)于精準(zhǔn)扶貧政策的過程中,某單位定點(diǎn)幫扶甲、乙兩個(gè)村各50戶貧困戶.為了做到精準(zhǔn)幫扶,工作組對(duì)這100戶村民的年收入情況、勞動(dòng)能力情況、子女受教育情況、危舊房情況、患病情況等進(jìn)行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標(biāo),制成下圖其中”表示甲村貧困戶,“”表示乙村貧困戶.

,則認(rèn)定該戶為“絕對(duì)貧困戶”,若,則認(rèn)定該戶為“相對(duì)貧困戶”,若,則認(rèn)定該戶為“低收入戶”;

,則認(rèn)定該戶為“今年能脫貧戶”,否則為“今年不能脫貧戶”.

1)從甲村50戶中隨機(jī)選出一戶,求該戶為“今年不能脫貧的絕對(duì)貧困戶的概率;

2)若從所有“今年不能脫貧的非絕對(duì)貧困戶”中選3戶,用表示所選3戶中乙村的戶數(shù),求的分布列和數(shù)學(xué)期望

3)試比較這100戶中,甲、乙兩村指標(biāo)的方差的大。ㄖ恍鑼懗鼋Y(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高二奧賽班N名學(xué)生的物理測(cè)評(píng)成績(jī)(滿分120分)分布直方圖如下,已知分?jǐn)?shù)在100~110的學(xué)生數(shù)有21人。

(Ⅰ)求總?cè)藬?shù)N和分?jǐn)?shù)在110~115分的人數(shù)n;

(Ⅱ)現(xiàn)準(zhǔn)備從分?jǐn)?shù)在110~115分的n名學(xué)生(女生占)中任選2人,求其中恰好含有一名女生的概率;

(Ⅲ)為了分析某個(gè)學(xué)生的學(xué)習(xí)狀態(tài),對(duì)其下一階段的學(xué)習(xí)提供指導(dǎo)性建議,對(duì)他前7次考試的數(shù)學(xué)成績(jī)x(滿分150分),物理成績(jī)y進(jìn)行分析,下面是該生7次考試的成績(jī)。

數(shù)學(xué)

88

83

117

92

108

100

112

物理

94

91

108

96

104

101

106

已知該生的物理成績(jī)y與數(shù)學(xué)成績(jī)x是線性相關(guān)的,若該生的數(shù)學(xué)成績(jī)達(dá)到130分,請(qǐng)你估計(jì)他的物理成績(jī)大約是多少?

附:對(duì)于一組數(shù)據(jù)其回歸線的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如圖所示的程序框圖,解答下列問題:

(1)求輸入的的值分別為時(shí),輸出的的值;

(2)根據(jù)程序框圖,寫出函數(shù))的解析式;并求當(dāng)關(guān)于的方程有三個(gè)互不相等的實(shí)數(shù)解時(shí),實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在校體育運(yùn)動(dòng)會(huì)中,甲乙丙三支足球隊(duì)進(jìn)行單循環(huán)賽(即每?jī)申?duì)比賽一場(chǎng)),共賽三場(chǎng),每場(chǎng)比賽勝者得3分,負(fù)者得0分,沒有平局.在每場(chǎng)比賽中,甲勝乙的概率為甲勝丙的概率為乙勝丙的概率為

1)求甲隊(duì)獲第一名且丙隊(duì)獲第二名的概率;

2)求在該次比賽中甲隊(duì)至少得3分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線和虛線畫出的是某幾何體的三視圖,則該幾何休的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某建筑公司打算在一處工地修建一座簡(jiǎn)易儲(chǔ)物間.該儲(chǔ)物間室內(nèi)地面呈矩形形狀,面積為,并且一面緊靠工地現(xiàn)有圍墻,另三面用高度一定的矩形彩鋼板圍成,頂部用防雨布遮蓋,其平面圖如圖所示.已知該型號(hào)彩鋼板價(jià)格為100/米,整理地面及防雨布總費(fèi)用為500元,不受地形限制,不考慮彩鋼板的厚度,記與墻面平行的彩鋼板的長(zhǎng)度為.

1)用表示修建儲(chǔ)物間的總造價(jià)(單位:元);

2)如何設(shè)計(jì)該儲(chǔ)物間,可使總造價(jià)最低?最低總造價(jià)為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·全國(guó)Ⅱ卷)如圖,四棱錐PABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD,ABBCADBADABC90°,EPD的中點(diǎn).

(1)證明:直線CE∥平面PAB

(2)點(diǎn)M在棱PC上,且直線BM與底面ABCD所成角為45°,求二面角MABD的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線為

)若直線的斜率為,求函數(shù)的單調(diào)區(qū)間.

)若函數(shù)是區(qū)間上的單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案