已知a,b∈R,a+b=1,x1•x2∈R.
(1)求
x1
a
+
x2
b
+
2
x1x2
的最小值;
(2)求證:(ax1+bx2)(ax2+bx1)>x1x2
考點(diǎn):不等式的證明
專(zhuān)題:綜合題,推理和證明
分析:(1)利用基本不等式,即可求出
x1
a
+
x2
b
+
2
x1x2
的最小值;
(2)展開(kāi),利用基本不等式可得結(jié)論.
解答: (1)解:∵a,b∈R,a+b=1,x1,x2∈R,
x1
a
+
x2
b
+
2
x1x2
≥3
3
x1
a
x2
b
2
x1x2
=3
3
2
ab
≥3
3
2
(
a+b
2
)2
=6,
當(dāng)且僅當(dāng)a=b=0.5,x1=x2=1時(shí),
x1
a
+
x2
b
+
2
x1x2
的最小值為6;
(2)證明:(ax1+bx2)(ax2+bx1)=(a2+b2)x1x2+ab(x12+x22
≥(a2+b2)x1x2+2abx1x2=(a+b)2x1x2≥x1x2
點(diǎn)評(píng):本題考查基本不等式的運(yùn)用,考查最值問(wèn)題,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直角梯形ABCD,AB⊥AD,CD⊥AD,AB=2AD=2CD=2,沿AC折疊成三棱錐,當(dāng)三棱錐體積最大時(shí),三棱錐外接球的體積為
 
;當(dāng)三棱錐外接球的體積最小時(shí),三棱錐的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(3π-α)=
2
cos(
2
),
3
cos(-α)=-
2
cos(π+β)
且0<α<π,0<β<π.求α、β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)F2的直線交雙曲線的右支于P,Q兩點(diǎn),若|PF1|=|F1F2|,且3|PF2|=2|QF2|,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若變量x,y滿足約束條件
y≤2x
x+y≤1
y≥-1
,則x-2y最小值為( 。
A、0
B、
3
2
C、-1
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線
x2
4
-
y2
m
=1的離心率為
5
2
,則m=
 
,其漸近線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角α的終邊上有一點(diǎn)P(3,y),且sinα=-
2
3
,求y的值,及cosα,tanα,cotα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x∈R,則“x<1”是“|x|<1”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanθ=2,則2sin2θ+sinθcosθ-cos2θ=( 。
A、-
4
3
B、-
6
5
C、
4
5
D、
9
5

查看答案和解析>>

同步練習(xí)冊(cè)答案