已知sin(3π-α)=
2
cos(
2
),
3
cos(-α)=-
2
cos(π+β)
且0<α<π,0<β<π.求α、β.
考點(diǎn):運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值,同角三角函數(shù)基本關(guān)系的運(yùn)用
專(zhuān)題:三角函數(shù)的求值
分析:由條件利用同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式求得tanβ=
3
3
tanα,結(jié)合0<α<π,0<β<π,可得α、β的值.
解答: 解:∵sin(3π-α)=
2
cos(
2
),∴sinα=
2
sinβ ①;
3
cos(-α)=-
2
cos(π+β)
,∴
3
cosα=
2
cosβ②.
由①②可得tanβ=
3
3
tanα,結(jié)合0<α<π,0<β<π,可得β=
π
4
,α=
π
3
點(diǎn)評(píng):本題主要考查同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某廠(chǎng)生產(chǎn)一種元零件,生產(chǎn)能力為日產(chǎn)100件,每日的固定成本為150元,每件的平均可變成本為10元.
(1)求該廠(chǎng)次元零件的日總成本函數(shù)及平均成本函數(shù);
(2)若每件售價(jià)14元,寫(xiě)出收益函數(shù);
(3)寫(xiě)出利潤(rùn)函數(shù)并求盈虧平衡點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)y=x+1與圓x2+y2=24相交于A、B兩點(diǎn),求弦長(zhǎng)|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,
cosC
cosB
=
2a-c
b
,則B的值為( 。
A、30°B、60°
C、90°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線(xiàn)l的斜率k滿(mǎn)足|k|<1,求直線(xiàn)l的傾斜角α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列的前4項(xiàng)之和為21,末4項(xiàng)之和為67,前n項(xiàng)和為286,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a∈[0,2π),則滿(mǎn)足
1+sin2a
=sina+cosa的a的取值范圍是( 。
A、[0,
π
2
]
B、[0,π]
C、[0,
4
]
D、[0,
4
]∪[
4
,2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b∈R,a+b=1,x1•x2∈R.
(1)求
x1
a
+
x2
b
+
2
x1x2
的最小值;
(2)求證:(ax1+bx2)(ax2+bx1)>x1x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

寫(xiě)出求解二元一次方程組
3x-2y=8
4x+y=7
的一個(gè)算法.

查看答案和解析>>

同步練習(xí)冊(cè)答案