已知角α的終邊上有一點P(3,y),且sinα=-
2
3
,求y的值,及cosα,tanα,cotα的值.
考點:任意角的三角函數(shù)的定義
專題:計算題,三角函數(shù)的求值
分析:運用任意角三角函數(shù)的定義,由x=3,r=
9+y2
,sinα=
y
r
=-
2
3
,求得y,再由cosα=
x
r
,tanα=
y
x
,cotα=
x
y
計算即可得到.
解答: 解:由于x=3,r=
9+y2
,
又sinα=
y
r
=
y
9+y2
=-
2
3
,
解得y=-
6
5
5
,
即有cosα=
x
r
=
3
9+
36
5
=
5
3

tanα=
y
x
=-
2
5
5
,
cotα=
x
y
=-
5
2
點評:本題考查三角函數(shù)的求值,主要考查任意角三角函數(shù)的定義,考查運算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=x+1與圓x2+y2=24相交于A、B兩點,求弦長|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a∈[0,2π),則滿足
1+sin2a
=sina+cosa的a的取值范圍是( 。
A、[0,
π
2
]
B、[0,π]
C、[0,
4
]
D、[0,
4
]∪[
4
,2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R,a+b=1,x1•x2∈R.
(1)求
x1
a
+
x2
b
+
2
x1x2
的最小值;
(2)求證:(ax1+bx2)(ax2+bx1)>x1x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

F是雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點,過點F向C的一條漸近線引垂線,垂足為A,交另一條漸近線于點B.若2
AF
=
FB
,則C的離心率是(  )
A、
2
3
3
B、
14
3
C、
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的不等式x2-ax+1≤0的解集中整數(shù)只有1,則a的取值范圍是( 。
A、2≤a<
5
2
B、2<a≤
5
2
C、2≤a≤
5
2
D、2<a<
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)、g(x)的定義域分別為DJ,DE,且DJ⊆DE.若對于任意x⊆DJ,都有g(shù)(x)=f(x),則稱函數(shù)g(x)為f(x)在DE上的一個延拓函數(shù).設(shè)f(x)=ex(x+1)(x<0),g(x)為f(x)在R上的一個延拓函數(shù),且g(x)是奇函數(shù),給出以下命題:
①當(dāng)x>0時,g(x)=e-x(x-1);
②函數(shù)g(x)有5個零點;
③g(x)>0的解集為(-1,0)∪(1,+∞);
④函數(shù)g(x)的極大值為1,極小值為-1;
⑤?x1,x2∈R,都有|g(x1)-g(x2)|<2
其中正確的命題是
 
(填上所有正確的命題序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

寫出求解二元一次方程組
3x-2y=8
4x+y=7
的一個算法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的可導(dǎo)函數(shù)f(x)=
1
3
x3+
1
2
ax2+2bx+c,當(dāng)x∈(0,1)時取得極大值,當(dāng)x∈(1,2)時,取得極小值,若(1-t)a+b+t-3>0恒成立,則實數(shù)t的取值范圍為(  )
A、(2,+∞)
B、[2,+∞)
C、(-∞,
5
4
D、(-∞,
5
4
]

查看答案和解析>>

同步練習(xí)冊答案