11.設(shè)直線系M:xcosθ+(y-1)sinθ=1(0≤θ≤2π),對(duì)于下列說法:
(1)M中所有直線均經(jīng)過一個(gè)定點(diǎn);
(2)存在一個(gè)圓與所有直線不相交;
(3)對(duì)于任意整數(shù)n(n≥3),存在正n邊形,其所有邊均在M中的直線上;
(4)M中的直線所能圍成的正三角形面積都相等.
其中說法正確的是(2)、(3) (填序號(hào)).

分析 先弄清直線系M中直線的特征,直線系M表示圓 x2+(y-1)2=1 的切線的集合,再判斷各個(gè)結(jié)論的正確性.

解答 解:(1)由直線系M:xcosθ+(y-1)sinθ=1(0≤θ≤2π),
可令   $\left\{\begin{array}{l}{x=cosθ}\\{y=1+sinθ}\end{array}\right.$,
消去θ可得  x2+(y-1)2=1,故 直線系M表示圓 x2+(y-1)2=1 的
切線的集合,故(1)不正確.
(2)因?yàn)閤cosθ+(y-1)sinθ=1所以點(diǎn)P(0,1)到M中每條直線的距離d=$\frac{1}{\sqrt{{cos}^{2}θ{+sin}^{2}θ}}$=1,
即M為圓C:x2+(y-1)2=1的全體切線組成的集合,
所以存在圓心在(0,1),
小于1的圓與M中所有直線均不相交,故(2)正確;
(3)由于圓 x2+(y-1)2=1 的外切正n 邊形,所有的邊都在直線系M中,
故(3)正確.
(4)M中的直線所能圍成的正三角形的邊長不一等,故它們的面積不一定相等,
如圖中等邊三角形ABC和 ADE面積不相等,故(4)不正確.
綜上,正確的命題是 (2)、(3),
故答案為:(2)、(3).

點(diǎn)評(píng) 本題考查直線系方程的應(yīng)用,要明確直線系M中直線的性質(zhì),依據(jù)直線系M表示圓 x2+(y-1)2=1 的切線的集合,結(jié)合圖形,判斷各個(gè)命題的正確性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖直三棱柱ABC-A1B1C1的底面是邊長為4的正三角形,E、F分別是BC,CC1的中點(diǎn),
(1)證明:平面AEF⊥平面B1BCC1
(2)設(shè)AB的中點(diǎn)為D,∠CA1D=45°,求三棱錐F-AEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知正項(xiàng)等比數(shù)列{an}中,a1=2,a2a6=256.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若a3,a5分別為等差數(shù)列{bn}的第3項(xiàng)和第5項(xiàng),求數(shù)列{bn}的通項(xiàng)公式及前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知i是虛數(shù)單位,復(fù)數(shù)2+$\frac{1}{i}$的模等于$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=$\root{3}{x-1}$的反函數(shù)f-1(x)= x3+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知點(diǎn)A(l,2)在直線x+y+a=0的上方的平面區(qū)域,則實(shí)數(shù)a的取值范圍是a>-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.復(fù)數(shù)z滿足z-i=1+i,則$\overline z$=( 。
A.-1+2iB.1-2iC.3+2iD.3-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知二次函數(shù)f(x)=ax2+bx,g(x)=2x-1.
(1)當(dāng)a=1時(shí),若函數(shù)f(x)的圖象恒在函數(shù)g(x)的圖象上方,試求實(shí)數(shù)b 的取值范圍;
(2)若y=f(x)對(duì)任意的x∈R均有f(x-2)=f(-x)成立,且f(x)的圖象經(jīng)過  點(diǎn)A(1,$\frac{2}{3}$).
①求函數(shù)y=f(x)的解析式;
②若對(duì)任意x<-3,都有2k$\frac{f(x)}{x}$<g(x)成立,試求實(shí)數(shù)k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知集合A={x|$\frac{x-5}{x+1}$<0,x∈R},B={x|x2-2x-m<0,x∈R}
(1)當(dāng)m=3時(shí),求A∩(∁RB);
(2)若A∩B={x|-1<x<4},求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案