10.已知集合A={x|$\frac{x-5}{x+1}$<0,x∈R},B={x|x2-2x-m<0,x∈R}
(1)當m=3時,求A∩(∁RB);
(2)若A∩B={x|-1<x<4},求實數(shù)m的值.

分析 (1)化簡集合A,求出m=3時集合B和它的補集,再計算A∩(∁RB);
(2)當A∩B={x|-1<x<4}時,得出B中x的值,從而求出實數(shù)m的值.

解答 解:集合A={x|$\frac{x-5}{x+1}$<0,x∈R}={x|-1<x<5,x∈R},
B={x|x2-2x-m<0,x∈R},
(1)當m=3時,B={x|x2-2x-3<0,x∈R}={x|-1<x<3,x∈R};
RB={x|x≤-1或x≥3,x∈R},
∴A∩(∁RB)={x|3≤x<5,x∈R};
(2)若A∩B={x|-1<x<4},則集合B中令x=4,得
42-2×4-m=0,解得m=8.

點評 本題考查了集合的化簡與運算問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

11.設(shè)直線系M:xcosθ+(y-1)sinθ=1(0≤θ≤2π),對于下列說法:
(1)M中所有直線均經(jīng)過一個定點;
(2)存在一個圓與所有直線不相交;
(3)對于任意整數(shù)n(n≥3),存在正n邊形,其所有邊均在M中的直線上;
(4)M中的直線所能圍成的正三角形面積都相等.
其中說法正確的是(2)、(3) (填序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的一個焦點為F(1,0)且離心率為$\frac{{\sqrt{3}}}{3}$
(1)求橢圓C的方程;
(2)若垂直于x軸的動直線與橢圓交于A,B兩點,直線l:x=3與x軸交于點N,直線AF與BN交于點M,求證:點M恒在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.數(shù)列$\frac{2}{3}$,-$\frac{4}{5}$,$\frac{6}{7}$,-$\frac{8}{9}$,…的第5項是$\frac{10}{11}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知a,b,c滿足c<b<a,且ac<0,那么下列關(guān)系式中一定成立的是①.
①ab>ac
②c(b-a)<0
③cb2<ab2
④ac(a-c)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知集合A={x/x-1>2}與B={x/-2x+5≤0},下列關(guān)于集合A與B的關(guān)系正確的是( 。
A.B⊆AB.A⊆BC.A=BD.A?B

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知集合U={1,2,3,4,5,6},A={2,4,6},求∁UA={1,3,5} .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=2sin(ωx-$\frac{5π}{6}$)+2$\sqrt{3}$sinωx的最小正周期T=π
(1)求出ω的值;
(2)求f(x)得單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.求下列各式的值:
(Ⅰ)${(\sqrt{2\sqrt{2}})^{\frac{4}{3}}}-4×{(\frac{16}{49})^{-\frac{1}{2}}}-\root{4}{2}×{8^{0.25}}+{(-2015)^0}$
(Ⅱ)log3$\frac{{\root{4}{27}}}{3}+lg25+lg4+{7^{{{log}_7}2}}$-ln1.

查看答案和解析>>

同步練習冊答案