分析 (1)根據(jù)面面垂直的判定定理進(jìn)行證明即可.
(2)根據(jù)三棱錐的體積公式進(jìn)行求解.
解答 證明:(1)因為AE⊥BB1,AE⊥BC,
所以AE⊥面B1BCC1,而AE?面AEF,
所以面AEF⊥面B1BCC1(6分)
(2)取AB中點(diǎn)D,連接A1D,CD,由題知∠CA1D=45°,
所以${A_1}D=CD=\frac{{\sqrt{3}}}{2}AB=2\sqrt{3}$,
在Rt$△A{A_1}D中,AA{\;}_1=\sqrt{{A_1}{D^2}-A{D^2}}=\sqrt{12-4}=2\sqrt{2}$(9分)
所以FC=$\sqrt{2}$,故體積V=$\frac{1}{3}{S_{△AEC}}×CF=\frac{{2\sqrt{6}}}{3}$(12分)
點(diǎn)評 本題主要考查面面垂直的判定以及空間幾何體的體積的計算,根據(jù)相應(yīng)的判定定理和體積公式是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 設(shè)p:f(x)=x3+2x2+mx+1是R上的單調(diào)增函數(shù),$q:m≥\frac{4}{3}$,則p是q的必要不充分條件 | |
B. | 若命題$p:?{x_0}∈R,x_0^2-{x_0}+1≤0$,則¬p:?x∈R,x2-x+1>0 | |
C. | 奇函數(shù)f(x)定義域為R,且f(x-1)=-f(x),那么f(8)=0 | |
D. | 命題“若x2+y2=0,則x=y=0”的逆否命題為“若x,y中至少有一個不為0,則x2+y2≠0” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
第一周 | 第二周 | 第三周 | 第四周 | 第五周 | |
A型數(shù)量(臺) | 10 | 10 | 15 | A4 | A5 |
B型數(shù)量(臺) | 10 | 12 | 13 | B4 | B5 |
C型數(shù)量(臺) | 15 | 8 | 12 | C4 | C5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(3)<f(-2)<f(1) | B. | f(1)<f(-2)<f(3) | C. | f(-2)<f(1)<f(3) | D. | f(3)<f(1)<f(-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com