【題目】設函數(shù)f(x)=x3-3ax+b(a≠0).

(1)若曲線y=f(x)在點(2,f(2))處與直線y=8相切,求a,b的值;

(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值點.

【答案】(1) ; (2)的極大值點,的極小值點.

【解析】

(1)根據(jù)切點是曲線與切線的公共點,可得,注意到直線y=8的斜率為0,結(jié)合導數(shù)的幾何意義可建立方程,聯(lián)合成方程組,求解即可。

(2)首先求導函數(shù)f′(x)=3(x2-a)(a≠0),可以看到a的取值直接影響到導函數(shù)的符號,故需對a進行分類討論,由于a≠0,所以分a<0和a>0兩種情況討論,得到單調(diào)區(qū)間,同時根據(jù)單調(diào)性判斷并求出極值。

(1)f′(x)=3x2-3a.

因為曲線y=f(x)在點(2,f(2))處與直線y=8相切,

所以,

解得a=4,b=24.

(2)f′(x)=3(x2-a)(a≠0).

當a<0時,f′(x)>0,函數(shù)f(x)在(-∞,+∞)上單調(diào)遞增,此時函數(shù)f(x)沒有極值點.

當a>0時,由f′(x)=0得x=±.

當x∈(-∞,-)時,f′(x)>0,函數(shù)f(x)單調(diào)遞增;

當x∈(-,)時,f′(x)<0,函數(shù)f(x)單調(diào)遞減;

當x∈(,+∞)時,f′(x)>0,函數(shù)f(x)單調(diào)遞增.

此時x=-是f(x)的極大值點,x=是f(x)的極小值點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】有下列四個命題:

①“已知函數(shù)y=f(x),x∈ D,D關于原點對稱,則函數(shù)y=f(x),x∈ D為奇函數(shù)的逆命題;

②“對應邊平行的兩角相等的否命題;

③“a≠0,則方程ax+b=0有實根的逆否命題;

④“A∪ B=B,B≠A”的逆否命題.

其中的真命題是(  )

A. ①② B. ②③

C. ①③ D. ③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個商場經(jīng)銷某種商品,根據(jù)以往資料統(tǒng)計,每位顧客采用的分期付款次數(shù)的分布列為:

1

2

3

4

5

0.4

0.2

0.2

0.1

0.1

商場經(jīng)銷一件該商品,采用1期付款,其利潤為200元;采用2期或3期付款,其利潤為250元;采用4期或5期付款,其利潤為300元.表示經(jīng)銷一件該商品的利潤.

(1)求購買該商品的3位顧客中,恰有2位采用1期付款的概率;

(2)求的分布列及期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,
(1)求tanA;
(2)若BC=1,求ACAB的最大值,并求此時角B的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,斜三棱柱中,側(cè)面為菱形,底面是等腰直角三角形,,C.

(1)求證:直線直線;

(2)若直線與底面ABC成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù) 有兩個極值點,,其中 ,,且,則方程 的實根個數(shù)為________________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,點在橢圓上

)求橢圓的方程

設動直線與橢圓有且僅有一個公共點,判斷是否存在以原點為圓心的圓,滿足此圓與相交于兩點 (兩點均不在坐標軸上),且使得直線、的斜率之積為定值?若存在,求此圓的方程;若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設等差數(shù)列{an}的前n項和為Sn , 已知a5=﹣3,S10=﹣40.
(1)求數(shù)列{an}的通項公式;
(2)若從數(shù)列{an}中依次取出第2,4,8,…,2n , …項,按原來的順序排成一個新數(shù)列{bn},求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線 =1(a>0,b>0)的左焦點為F,離心率為 .若經(jīng)過F和P(0,4)兩點的直線平行于雙曲線的一條漸近線,則雙曲線的方程為( 。
A.
=1
B.
=1
C.
=1
D.
=1

查看答案和解析>>

同步練習冊答案