【題目】設(shè) .

(1)若直線與和圖象均相切,求直線的方程;

(2)是否存在使得按某種順序組成等差數(shù)列?若存在,這樣的有幾個?若不存在,請說明理由.

【答案】(1)2存在,有且只有一個.

【解析】試題分析:1設(shè)切線為,代入中化簡得,設(shè)切點則切線為: ,然后可求出進而求出直線的方程;(2由(1)可知, 的圖象分居直線的上下兩側(cè),則,故而,結(jié)合題設(shè)條件,構(gòu)造,由導數(shù)得出的單調(diào)性,進而可得出結(jié)論.

試題解析:(1)設(shè)切線為,代入中化簡得,則

設(shè)的切點為,則切線為:

整理得

,則,

∴直線的方程為

2)由(1)可知, 的圖象分居直線的上下兩側(cè),則

假設(shè)存在,使得按某種順序組成等差數(shù)列,則必有, , 成等差數(shù)列,即

設(shè),則

上單調(diào)遞增

,

∴有且僅有一個,使得成立

∴存在,使得按某種順序組成等差數(shù)列,并且這樣的有且僅有1

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】(2017·成都高中畢業(yè)第一次診斷)已知雙曲線 (a>0,b>0)的左、右焦點分別為F1,F2,雙曲線上一點P滿足PF2x軸.若|F1F2|12,|PF2|5,則該雙曲線的離心率為(  )

A. B. C. D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】博鰲亞洲論壇2015年會員大會于3月27日在海南博鰲舉辦,大會組織者對招募的100名服務(wù)志愿者培訓后,組織一次 知識競賽,將所得成績制成如右頻率分布直方圖假定每個分數(shù)段內(nèi)的成績均勻分布,組織者計劃對成績前20名的參賽者進行獎勵.

1試確定受獎勵的分數(shù)線;

2從受獎勵的20人中利用分層抽樣抽取5人,再從抽取的5人中抽取2人在主會場服務(wù),試求2人成績都在90分以上的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某項競賽分為初賽、復賽、決賽三個階段進行,每個階段選手要回答一個問題.規(guī)定正確回答問題者進入下一階段競賽,否則即遭淘汰.已知某選手通過初賽、復賽、決賽的概率分別是且各階段通過與否相互獨立.

(1)求該選手在復賽階段被淘汰的概率;

(2)設(shè)該選手在競賽中回答問題的個數(shù)為ξ,求ξ的分布列與均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù),其中.

(1)試討論函數(shù)的單調(diào)性;

(2)已知當 (其中是自然對數(shù)的底數(shù))時,在上至少存在一點,使成立,求的取值范圍;

(3)求證:當時,對任意,有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

I)若曲線存在斜率為-1的切線,求實數(shù)a的取值范圍;

II)求的單調(diào)區(qū)間;

III)設(shè)函數(shù),求證:當時, 上存在極小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l ,曲線C

(1)m3時,判斷直線l與曲線C的位置關(guān)系;

(2)若曲線C上存在到直線l的距離等于的點,求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

()a1的解集;

(), 恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

近年來,隨著雙十一、雙十二等網(wǎng)絡(luò)活動的風靡,各大網(wǎng)商都想出了一系列的降價方案,以此來提高自己的產(chǎn)品利潤. 已知在2016年雙十一某網(wǎng)商的活動中,某店家采取了兩種優(yōu)惠方案以供選擇:

方案一:購物滿400元以上的,超出400元的部分只需支出超出部分的x%;

方案二:購物滿400元以上的,可以參加電子抽獎活動,即從1,2,3,4,5,6這6張卡牌中任取2張,將得到的數(shù)字相加,所得結(jié)果與享受優(yōu)惠如下:

數(shù)字和

[3,4]

[5,7]

[8,9]

[10,11]

實際付款

原價

9折

8折

5折

(Ⅰ)若某顧客消費了800元,且選擇方案二,求該顧客只需支付640元的概率;

(Ⅱ)若某顧客購物金額為500元,她選擇了方案二后,得到的數(shù)字之和為6,此時她發(fā)現(xiàn)使用方案一、二最后支付的金額相同,求x的值.

查看答案和解析>>

同步練習冊答案