【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(I)求直方圖中的值;
(II)求月平均用電量的眾數(shù)和中位數(shù);
(III)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
【答案】(I)(II)230,224(III)5
【解析】
試題分析:(1)由直方圖的性質(zhì)可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方圖中眾數(shù)為最高矩形上端的中點可得,可得中位數(shù)在[220,240)內(nèi),設(shè)中位數(shù)為a,解方程(0.002+0.0095++0.011)×20+0.0125×(a-220)=0.5可得;(3)可得各段的用戶分別為25,15,10,5,可得抽取比例,可得要抽取的戶數(shù)
試題解析:(I)由得:所以直方圖中的值.
(II)月平均用電量的眾數(shù)是;月平均用電量的中位數(shù)是.
(III)月平均用電量為的用戶有戶,月平均用電量為的用戶有戶,月平均用電量為的用戶有戶,月平均用電量為的用戶有戶,抽取比例,月平均用電量在的用戶中應(yīng)抽取戶.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)用“五點法”作出函數(shù)在一個周期內(nèi)的簡圖;
(2)求出函數(shù)的最大值及取得最大值時的x的值;
(3)求出函數(shù)在上的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線的頂點為坐標原點O,焦點F在軸正半軸上,準線與圓相切.
(Ⅰ)求拋物線的方程;
(Ⅱ)已知直線和拋物線交于點,命題:“若直線過定點(0,1),則 ”,
請判斷命題的真假,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)為常數(shù), 的一個零點是,函數(shù)是自然對數(shù)的底數(shù), 設(shè)函數(shù).
(1)過點坐標原點作曲線的切線, 證明切點的橫坐標為;
(2)令,若函數(shù)在區(qū)間上是單調(diào)函數(shù), 求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某地參加2015 年夏令營的名學(xué)生的身體健康情況,將學(xué)生編號為,采用系統(tǒng)抽樣的方法抽取一個容量為的樣本,且抽到的最小號碼為,已知這名學(xué)生分住在三個營區(qū),從到在第一營區(qū),從到在第二營區(qū),從到在第三營區(qū),則第一、第二、第三營區(qū)被抽中的人數(shù)分別為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(),其最小正周期為.
(1)求在區(qū)間上的減區(qū)間;
(2)將函數(shù)圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再將所得的圖象向右平移個單位,得到函數(shù)的圖象,若關(guān)于的方程在區(qū)間上有且只有一個實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過點A(﹣2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點.
(1)求圓C的方程;
(2)若=﹣2,求實數(shù)k的值;
(3)過點(0,4)作動直線m交圓C于E,F(xiàn)兩點.試問:在以EF為直徑的所有圓中,是否存在這樣的圓P,使得圓P經(jīng)過點M(2,0)?若存在,求出圓P的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若有窮數(shù)列(是正整數(shù)),滿足即(是正整數(shù),且),就稱該數(shù)列為“對稱數(shù)列”。例如,數(shù)列與數(shù)列都是“對稱數(shù)列”.
(1)已知數(shù)列是項數(shù)為9的對稱數(shù)列,且,,,,成等差數(shù)列, , ,試求, , , ,并求前9項和.
(2)若是項數(shù)為的對稱數(shù)列,且構(gòu)成首項為31,公差為的等差數(shù)列,數(shù)列前項和為,則當為何值時, 取到最大值?最大值為多少?
(3)設(shè)是項的“對稱數(shù)列”,其中是首項為1,公比為2的等比數(shù)列.求前項的和 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ABC=60°,∠BAC=90°,AD是BC邊上的高,沿AD將△ABC折成60°的二面角B-AD-C,如圖2.
(1)證明:平面ABD⊥平面BCD;
(2)設(shè)E為BC的中點,BD=2,求異面直線AE與BD所成的角的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com