【題目】若有窮數(shù)列(是正整數(shù)),滿足即(是正整數(shù),且),就稱該數(shù)列為“對稱數(shù)列”。例如,數(shù)列與數(shù)列都是“對稱數(shù)列”.
(1)已知數(shù)列是項(xiàng)數(shù)為9的對稱數(shù)列,且,,,,成等差數(shù)列, , ,試求, , , ,并求前9項(xiàng)和.
(2)若是項(xiàng)數(shù)為的對稱數(shù)列,且構(gòu)成首項(xiàng)為31,公差為的等差數(shù)列,數(shù)列前項(xiàng)和為,則當(dāng)為何值時(shí), 取到最大值?最大值為多少?
(3)設(shè)是項(xiàng)的“對稱數(shù)列”,其中是首項(xiàng)為1,公比為2的等比數(shù)列.求前項(xiàng)的和 .
【答案】(1)見解析(2)當(dāng)時(shí), 取得最大值. 的最大值為481.(3)
【解析】試題分析:
(1)由數(shù)列新定義的知識結(jié)合題意可得=11, =8, , ,且=66
(2)利用前n項(xiàng)和公式結(jié)合二次函數(shù)的性質(zhì)可得當(dāng)時(shí), 取得最大值. 的最大值為481.
(3)結(jié)合通項(xiàng)公式分類討論可得前項(xiàng)的和.
試題解析:
解:(1)設(shè)前5項(xiàng)的公差為,則,解得 ,
∴=11, 2+2×3=8, ,
∴=2(2+5+8+11+14)-14=66
(2)
∴
當(dāng)時(shí), 取得最大值. 的最大值為481.
(3).
由題意得 是首項(xiàng)為,公比為的等比數(shù)列.
當(dāng)時(shí), .
當(dāng)時(shí),
綜上所述,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)其中是實(shí)數(shù).設(shè)為該函數(shù)圖像上的兩點(diǎn),橫坐標(biāo)分別為,且.
(1求的單調(diào)區(qū)間和極值;
(2)若,函數(shù)的圖像在點(diǎn)處的切線互相垂直,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(I)求直方圖中的值;
(II)求月平均用電量的眾數(shù)和中位數(shù);
(III)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩條直線l1:ax﹣by+4=0,l2:(a﹣1)x+y+b=0. 求滿足下列條件的a,b值.
(Ⅰ)l1⊥l2且l1過點(diǎn)(﹣3,﹣1);
(Ⅱ)l1∥l2且原點(diǎn)到這兩直線的距離相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為已知
(I)設(shè),證明數(shù)列是等比數(shù)列;
(II)求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是矩形,,是的中點(diǎn),與交于點(diǎn),平面.
(Ⅰ)求證:面;
(Ⅱ)若,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機(jī)抽取個(gè)作為樣本,稱出它們的重量(單位:克),重量分組區(qū)間為,,,,由此得到樣本的重量頻率分布直方圖(如圖).
(Ⅰ)求的值,并根據(jù)樣本數(shù)據(jù),試估計(jì)盒子中小球重量的眾數(shù)與平均值;
(Ⅱ)從盒子中隨機(jī)抽取個(gè)小球,其中重量在內(nèi)的小球個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望. (以直方圖中的頻率作為概率).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三()班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答如下問題.
(1)求全班人數(shù)及分?jǐn)?shù)在之間的頻數(shù),并估計(jì)該班的平均分?jǐn)?shù);
(2)若要從分?jǐn)?shù)在之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份分?jǐn)?shù)在之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班倡議假期每位學(xué)生至少閱讀一本名著,為了解學(xué)生的閱讀情況,對該班所有學(xué)生進(jìn)行了調(diào)查.調(diào)查結(jié)果如下表:
(1)試根據(jù)上述數(shù)據(jù),求這個(gè)班級女生閱讀名著的平均本數(shù);
(2)若從閱讀5本名著的學(xué)生中任選2人交流讀書心得,求選到男生和女生各1人的概率;
(3)試比較該班男生閱讀名著本數(shù)的方差與女生閱讀名著本數(shù)的方差的大小(只需寫出結(jié)論).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com