【題目】在平面直角坐標系中,O為坐標原點,A,B,C三點滿足 = + . (Ⅰ)求證:A,B,C三點共線;
(Ⅱ)已知A(1,cosx),B(1+sinx,cosx),x∈[0, ],f(x)= ﹣(2m2+ )| |的最小值為 ,求實數(shù)m的值.
【答案】解:(Ⅰ)證明:根據(jù)條件:
=
=
= ;
∴ ;
∴A,B,C三點共線;
(Ⅱ)根據(jù)條件: , = , ,且 ;
∴ = , ;
∴
=﹣sin2x﹣2m2sinx+2
=﹣(sinx+m2)2+m4+2;
又sinx∈[0,1];
∴sinx=1時,f(x)取最小值 ;
即 ;
∴ ;
∴ .
【解析】(Ⅰ)將 代入 ,然后進行向量的數(shù)乘運算即可得出 ,從而得出A,B,C三點共線;(Ⅱ)由條件即可求出 的坐標,進而求出 ,及 的值,代入 并化簡即可得出f(x)=﹣sin2x2m2sinx+2,而配方即可得出sinx=1時,f(x)取最小值 ,從而得到 ,這樣即可解出m的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某機械廠今年進行了五次技能考核,其中甲、乙兩名技術(shù)骨干得分的平均分相等,成績統(tǒng)計情況如莖葉圖所示(其中a是0﹣9的某個整數(shù)
(1)若該廠決定從甲乙兩人中選派一人去參加技能培訓(xùn),從成績穩(wěn)定性角度考慮,你認為誰去比較合適?
(2)若從甲的成績中任取兩次成績作進一步分析,在抽取的兩次成績中,求至少有一次成績在(90,100]之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】;給定函數(shù)① ,② ,③y=|x﹣1|,④y=2x+1 , 其中在區(qū)間(0,1)上單調(diào)遞減的函數(shù)序號是( )
A.①②
B.②③
C.③④
D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ< )的圖象與x軸相鄰兩個交點間的距離為 ,且圖象上一個最低點為M( ,﹣2). (Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)當(dāng)x∈[ , ]時,求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,BC=CC1 , M、N分別為BB1、A1C1的中點.
(Ⅰ)求證:CB1⊥平面ABC1;
(Ⅱ)求證:MN∥平面ABC1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}是公差d不為0的等差數(shù)列,a1=2,Sn為其前n項和.
(1)當(dāng)a3=6時,若a1 , a3 , , …, 成等比數(shù)列(其中3<n1<n2<…<nk),求nk的表達式;
(2)是否存在合適的公差d,使得{an}的任意前3n項中,前n項的和與后n項的和的比值等于定常數(shù)?求出d,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一直線l過直線l1:3x﹣y=3和直線l2:x﹣2y=2的交點P,且與直線l3:x﹣y+1=0垂直.
(1)求直線l的方程;
(2)若直線l與圓心在x正半軸上的半徑為 的圓C相切,求圓C的標準方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)g(x)=ax2﹣2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設(shè)f(x)= .
(1)求a,b的值;
(2)不等式f(2x)﹣k2x≥0在x∈[﹣1,1]上恒成立,求實數(shù)k的取值范圍;
(3)方程f(|2x﹣1|)+k( ﹣3)有三個不同的實數(shù)解,求實數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com