【題目】已知y=f(x)是定義在R上的奇函數(shù),且 為偶函數(shù),對于函數(shù)y=f(x)有下列幾種描述,其中描述正確的是( ) ①y=f(x)是周期函數(shù);②x=π是它的一條對稱軸
③(﹣π,0)是它圖象的一個對稱中心;④當(dāng) 時,它一定取最大值
A.①②
B.①③
C.②④
D.②③
【答案】B
【解析】解答:由已知可得:f(﹣x)=﹣f(x) …(1)
f(﹣x﹣ )=﹣f(x+ )…(2)
f(﹣x+ )=f(x+ )…(3)
由(3)知 函數(shù)f(x)有對稱軸x=
由(2)(3)得 f(﹣x﹣ )=﹣f(﹣x+ );
令z=﹣x+ 則﹣x﹣ =z﹣π,
∴f(z﹣π)=﹣f(z),
故有f(z﹣π﹣π)=﹣f(z﹣π),
兩者聯(lián)立得 f(z﹣2π)=f(z),
可見函數(shù)f(x)是周期函數(shù),且周期為2π;
由(1)知:f(﹣z)=﹣f(z),代入上式得:f(z﹣2π)=﹣f(﹣z);
由此式可知:函數(shù)f(x)有對稱中心(﹣π,0)
由上證知①③是正確的命題.
故應(yīng)選B
分析:本題函數(shù)的性質(zhì),先對已知y=f(x)是定義在R上的奇函數(shù),且 為偶函數(shù)用定義轉(zhuǎn)化為恒等式,再由兩個恒等式進(jìn)行合理變形得出與四個命題有關(guān)的結(jié)論,通過推理證得①③正確.
【考點精析】認(rèn)真審題,首先需要了解函數(shù)奇偶性的性質(zhì)(在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)f(x)=(m2﹣5m+7)x﹣m﹣1(m∈R)為偶函數(shù).
(1)求 的值;
(2)若f(2a+1)=f(a),求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將5個小球放到3個盒子中,在下列條件下,各有多少種投放方法?
①小球不同,盒子不同,盒子不空;
②小球不同,盒子不同,盒子可空;
③小球不同,盒子相同,盒子不空;
④小球不同,盒子相同,盒子可空;
⑤小球相同,盒子不同,盒子不空;
⑥小球相同,盒子不同,盒子可空;
⑦小球相同,盒子相同,盒子不空;
⑧小球相同,盒子相同.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與軸的正半軸重合,圓的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).
(Ⅰ)若, 是直線與軸的交點, 是圓上一動點,求的最大值;
(Ⅱ)若直線被圓截得的弦長等于圓的半徑倍,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】語文老師要從10篇課文中隨機(jī)抽3篇讓學(xué)生背誦,某學(xué)生只能背誦其中的6篇,求:
(1)抽到他能背誦的課文的數(shù)量的分布列;
(2)他能及格的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(Ⅰ)若,求的單調(diào)區(qū)間;(Ⅱ)若有最大值3,求的值;(Ⅲ)若的值域是,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集為實數(shù)集R,集合A={x|y= + },B={x|log2x>1}.
(1)分別求A∩B,(RB)∪A;
(2)已知集合C={x|1<x<a},若CA,求實數(shù)a的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我校要從參加數(shù)學(xué)競賽的1000名學(xué)生中,隨機(jī)抽取50名學(xué)生的成績進(jìn)行分析,現(xiàn)將參加數(shù)學(xué)競賽的1000名學(xué)生編號如下000,001,002,…,999,如果在第一組隨機(jī)抽取的一個號碼為015,則抽取的第40個號碼為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com