【題目】如圖,四面體中,是正三角形,是直角三角形,,.
(1)證明:平面平面;
(2)若點(diǎn)為中點(diǎn),求二面角的正弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)先證明出,可得出,可得出,然后取的中點(diǎn),連接、,并設(shè),利用勾股定理證明出,由等腰三角形三線合一得出,利用直線與平面垂直的判定定理可證明出平面,再利用平面與平面垂直的判定定理可得出平面平面;
(2)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,設(shè),計(jì)算出平面和的法向量,利用空間向量法求出二面角的余弦值,再利用同角三角函數(shù)的基本關(guān)系可得出答案.
(1)是等邊三角形,,又,,
,,為直角三角形,所以,
取的中點(diǎn),連接、,則,.
設(shè),則,又,
,,又,平面,
平面,因此,平面平面;
(2)由題設(shè)及(1)可知、、兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),建立如下圖所示的空間直角坐標(biāo)系,設(shè),則、、、,為的中點(diǎn),則,
,,.
設(shè)平面的一個(gè)法向量為,由,得,
得,令,則,,
所以,平面的一個(gè)法向量為.
同理可得,平面的一個(gè)法向量為,
,
所以,二面角的正弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,過其焦點(diǎn)的直線與拋物線相交于、兩點(diǎn),滿足.
(1)求拋物線的方程;
(2)已知點(diǎn)的坐標(biāo)為,記直線、的斜率分別為,,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M:x2+y2-12x-14y+60=0及其上一點(diǎn)A(2,4).
(1)設(shè)圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;
(2)設(shè)平行于OA的直線l與圓M相交于B,C兩點(diǎn),且BC=OA,
求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),現(xiàn)從高一學(xué)生中抽取100人做調(diào)查,得到列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計(jì) | |
男生 | 40 | ||
女生 | 30 | ||
合計(jì) | 100 |
且已知在100個(gè)人中隨機(jī)抽取1人,抽到喜歡游泳的學(xué)生的概率為.
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由.
參考公式與臨界值表:.
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】勒洛三角形是具有類似圓的“定寬性”的面積最小的曲線,它由德國機(jī)械工程專家,機(jī)構(gòu)運(yùn)動(dòng)學(xué)家勒洛首先發(fā)現(xiàn),其作法是:以等邊三角形每個(gè)頂點(diǎn)為圓心,以邊長為半徑,在另兩個(gè)頂點(diǎn)間作一段弧,三段弧圍成的曲邊三角形就是勒洛三角形,現(xiàn)在勒洛三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自正三角形外的概率為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們知道,地球上的水資源有限,愛護(hù)地球、節(jié)約用水是我們每個(gè)人的義務(wù)與責(zé)任.某市政府為了對自來水的使用進(jìn)行科學(xué)管理,節(jié)約水資源,計(jì)劃確定一個(gè)家庭年用水量的標(biāo)準(zhǔn).為此,對全市家庭日常用水量的情況進(jìn)行抽樣抽查,獲得了個(gè)家庭某年的用水量(單位:立方米),統(tǒng)計(jì)結(jié)果如下表及圖所示.
分組 | 頻數(shù) | 頻率 |
25 | ||
0.19 | ||
50 | ||
0.23 | ||
0.18 | ||
5 |
(1)分別求出,的值;
(2)若以各組區(qū)間中點(diǎn)值代表該組的取值,試估計(jì)全市家庭年均用水量;
(3)從樣本中年用水量在(單位:立方米)的5個(gè)家庭中任選3個(gè),作進(jìn)一步的跟蹤研究,求年用水量最多的家庭被選中的概率(5個(gè)家庭的年用水量都不相等).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)研機(jī)構(gòu),對本地歲的人群隨機(jī)抽取人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,將生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,結(jié)果顯示,有人為“低碳族”,該人的年齡情況對應(yīng)的頻率分布直方圖如圖.
(1)根據(jù)頻率分布直方圖,估計(jì)這名“低碳族”年齡的平均值,中位數(shù);
(2)若在“低碳族”且年齡在、的兩組人群中,用分層抽樣的方法抽取人,試估算每個(gè)年齡段應(yīng)各抽取多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測量結(jié)果得如下頻數(shù)分布表:
質(zhì)量指標(biāo)值分組 | |||||
頻數(shù) | 6 | 26 | 38 | 22 | 8 |
(1)在答題卡上畫出這些數(shù)據(jù)的頻率分布直方圖(要求用陰影部分顯示);
(2)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品80%”的規(guī)定?
(3)估計(jì)這種產(chǎn)品質(zhì)量指標(biāo)值的平均值及中位數(shù)(其中求平均值時(shí)同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表,求中位數(shù)精確到0.1).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角梯形中,,,點(diǎn)在上,且,將沿折起,使得平面平面(如圖2).為中點(diǎn)
(1)求證:;
(2)求四棱錐的體積;
(3)在線段上是否存在點(diǎn),使得平面?若存在,求的值;若不存在,請說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com