【題目】已知曲線的極坐標(biāo)方程為,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系.
(1)若曲線:(t為參數(shù))與曲線相交于兩點(diǎn),,求;
(2)若是曲線上的動(dòng)點(diǎn),且點(diǎn)的直角坐標(biāo)為,求的最大值.
【答案】(1)(2)
【解析】
(1)曲線的極坐標(biāo)方程為,化為,結(jié)合極坐標(biāo)與直角坐標(biāo)的互化公式可得曲線的直角坐標(biāo)方程;由曲線:(為參數(shù)),消去參數(shù),可得曲線的普通方程.求出圓心到直線的距離,再由垂徑定理求解弦長(zhǎng);
(2)在曲線上,設(shè)(為參數(shù)),利用三角函數(shù)求的最大值.
(1)曲線的極坐標(biāo)方程為,化為,
極坐標(biāo)與直角坐標(biāo)的互化公式:
可得直角坐標(biāo)方程為,
由曲線:(為參數(shù)),消去參數(shù),
可得曲線的普通方程為,
圓的圓心坐標(biāo)為,到直線的距離.
根據(jù)幾何關(guān)系可得:弦長(zhǎng)
(2)在曲線上,
由(1)可得:
設(shè)(為參數(shù)),
則,其中,
的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自古以來“民以食為天”,餐飲業(yè)作為我國(guó)第三產(chǎn)業(yè)中的一個(gè)支柱產(chǎn)業(yè),一直在社會(huì)發(fā)展與人民生活中發(fā)揮著重要作用.某機(jī)構(gòu)統(tǒng)計(jì)了2010~2016年餐飲收入的情況,得到下面的條形圖,則下面結(jié)論中不正確的是( )
A. 2010~2016年全國(guó)餐飲收入逐年增加
B. 2016年全國(guó)餐飲收入比2010年翻了一番以上
C. 2010~2016年全國(guó)餐飲收入同比增量最多的是2015年
D. 2010~2016年全國(guó)餐飲收入同比增量超過3000億元的年份有3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某蛇養(yǎng)殖基地因國(guó)家實(shí)施精準(zhǔn)扶貧,大力扶持農(nóng)業(yè)產(chǎn)業(yè)發(fā)展,擬擴(kuò)大養(yǎng)殖規(guī)模.現(xiàn)對(duì)該養(yǎng)殖基地已經(jīng)售出的王錦蛇的體長(zhǎng)(單位:厘米)進(jìn)行了統(tǒng)計(jì),得到體長(zhǎng)的頻數(shù)分布表如下:
體長(zhǎng)(厘米) | ||||||
頻數(shù) | 40 | 50 | 110 | 160 | 120 | 20 |
(1)將王錦蛇的體長(zhǎng)在各組的頻率視為概率,趙先生欲從此基地隨機(jī)購(gòu)買3條王錦蛇,求至少有2條體長(zhǎng)不少于200厘米的概率.
(2)為了拓展銷售市場(chǎng),該養(yǎng)殖基地決定購(gòu)買王錦蛇與烏梢蛇兩類成年母蛇用于繁殖幼蛇,這兩類蛇各200條的相關(guān)信息如下表.
繁殖年限(年) | 3 | 4 | 5 | 6 |
王錦蛇(條) | 20 | 60 | 80 | 40 |
烏梢蛇(條) | 30 | 80 | 70 | 20 |
若王錦蛇、烏梢蛇成年母蛇的購(gòu)買成本分別為650元/條、600元/條,每條母蛇平均可為養(yǎng)殖場(chǎng)獲得1200元/年的銷售額,且每條蛇的繁殖年限均為整數(shù),將每條蛇的繁殖年限的頻率看作概率,以每條蛇所獲得的毛利潤(rùn)(毛利潤(rùn)=總銷售額-購(gòu)買成本)的期望值作為購(gòu)買蛇類的依據(jù),試問:應(yīng)購(gòu)買哪類蛇?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若對(duì)任意,函數(shù)的圖像不在軸上方,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),若在區(qū)間上的最小值為-2,其中是自然對(duì)數(shù)的底數(shù),求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形,一個(gè)數(shù)學(xué)意義上分形的生成是基于一個(gè)不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).分形幾何學(xué)不僅讓人們感悟到科學(xué)與藝木的融合,數(shù)學(xué)與藝術(shù)審美的統(tǒng)一,而且還有其深刻的科學(xué)方法論意義.如圖,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出的謝爾賓斯基三角形就屬于-種分形,具體作法是取一個(gè)實(shí)心三角形,沿三角形的三邊中點(diǎn)連線,將它分成4個(gè)小三角形,去掉中間的那一個(gè)小三角形后,對(duì)其余3個(gè)小三角形重復(fù)上述過程逐次得到各個(gè)圖形.
若在圖④中隨機(jī)選。c(diǎn),則此點(diǎn)取自陰影部分的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形,一個(gè)數(shù)學(xué)意義上分形的生成是基于一個(gè)不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng),分形幾何學(xué)不僅讓人們感悟到科學(xué)與藝術(shù)的融合,數(shù)學(xué)與藝術(shù)審美的統(tǒng)一,而且還有其深刻的科學(xué)方法論意義,如圖,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出的謝爾賓斯基三角形就屬于一種分形,具體作法是取一個(gè)實(shí)心三角形,沿三角形的三邊中點(diǎn)連線.將它分成4個(gè)小三角形,去掉中間的那一個(gè)小三角形后,對(duì)其余3個(gè)小三角形重復(fù)上述過程逐次得到各個(gè)圖形,若記圖①三角形的面積為,則第n個(gè)圖中陰影部分的面積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱的所有棱長(zhǎng)都是2,平面ABC,D,E分別是AC,的中點(diǎn).
求證:平面;
求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年,南昌市召開了全球VR產(chǎn)業(yè)大會(huì),為了增強(qiáng)對(duì)青少年VR知識(shí)的普及,某中學(xué)舉行了一次普及VR知識(shí)講座,并從參加講座的男生中隨機(jī)抽取了50人,女生中隨機(jī)抽取了70人參加VR知識(shí)測(cè)試,成績(jī)分成優(yōu)秀和非優(yōu)秀兩類,統(tǒng)計(jì)兩類成績(jī)?nèi)藬?shù)得到如下的列聯(lián)表:
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
男生 | a | 35 | 50 |
女生 | 30 | d | 70 |
總計(jì) | 45 | 75 | 120 |
(1)確定a,d的值;
(2)試判斷能否有90%的把握認(rèn)為VR知識(shí)的測(cè)試成績(jī)優(yōu)秀與否與性別有關(guān);
(3)為了宣傳普及VR知識(shí),從該校測(cè)試成績(jī)獲得優(yōu)秀的同學(xué)中按性別采用分層抽樣的方法,隨機(jī)選出6名組成宣傳普及小組.現(xiàn)從這6人中隨機(jī)抽取2名到校外宣傳,求“到校外宣傳的2名同學(xué)中至少有1名是男生”的概率.
附:
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com