【題目】自古以來“民以食為天”,餐飲業(yè)作為我國第三產(chǎn)業(yè)中的一個支柱產(chǎn)業(yè),一直在社會發(fā)展與人民生活中發(fā)揮著重要作用.某機構統(tǒng)計了2010~2016年餐飲收入的情況,得到下面的條形圖,則下面結(jié)論中不正確的是( )
A. 2010~2016年全國餐飲收入逐年增加
B. 2016年全國餐飲收入比2010年翻了一番以上
C. 2010~2016年全國餐飲收入同比增量最多的是2015年
D. 2010~2016年全國餐飲收入同比增量超過3000億元的年份有3個
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,底面ABCD為矩形,平面ABCD,E為PD的中點.
(1)證明:平面AEC;
(2)若,,,求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C的極坐標方程為ρ=4cosθ,以極點為原點,極軸為x軸正半軸建立平面直角坐標系,設直線l的參數(shù)方程為(t為參數(shù)).
(1)求曲線C的直角坐標方程與直線l的普通方程;
(2)設曲線C與直線l相交于P,Q兩點,以PQ為一條邊作曲線C的內(nèi)接矩形,求該矩形的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】未了解人們對“延遲退休年齡政策”的態(tài)度,某部門從年齡在15歲到65歲的人群中隨機調(diào)查了100人,將這100人的年齡數(shù)據(jù)分成5組:,,,,,整理得到如圖所示的頻率分布直方圖.
在這100人中不支持“延遲退休”的人數(shù)與年齡的統(tǒng)計結(jié)果如下:
年齡 | |||||
不支持“延遲退休”的人數(shù) | 15 | 5 | 15 | 23 | 17 |
(1)由頻率分布直方圖,估計這100人年齡的平均數(shù);
(2)由頻率分布直方圖,若在年齡,,的三組內(nèi)用分層抽樣的方法抽取12人做問卷調(diào)查,求年齡在組內(nèi)抽取的人數(shù);
(3)根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,據(jù)此表,能否在犯錯誤的概率不超過5%的前提下,認為以45歲為分界點的不同人群對“延遲退休年齡政策”的不支持態(tài)度存在差異?
\ | 45歲以下 | 45歲以上 | 總計 |
不支持 | |||
支持 | |||
總計 |
附:,其中.
參考數(shù)據(jù):
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某市高中某學科競賽中,某一個區(qū)4000名考生的參賽成績統(tǒng)計如圖所示.
(1)求這4000名考生的競賽平均成績(同一組中數(shù)據(jù)用該組區(qū)間中點作代表);
(2)由直方圖可認為考生競賽z成績服正態(tài)分布,其中,分別取考生的平均成績和考生成績的方差,那么該區(qū)4000名考生成績超過84.41分(含84.81分)的人數(shù)估計有多少人?
附:①,;②,則,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的方程為,曲線:(為參數(shù),),在以原點為極點,軸正半軸為極軸的極坐標系中,曲線:.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)若直線與曲線有公共點,且直線與曲線的交點恰好在曲線與軸圍成的區(qū)域(不含邊界)內(nèi),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了調(diào)查某地區(qū)70歲以上老人是否需要志愿者提供幫助,用簡單隨機抽樣的方法從該地區(qū)調(diào)查了100位70歲以上老人,結(jié)果如下:
男 | 女 | |
需要 | 18 | 5 |
不需要 | 32 | 45 |
(1)估計該地區(qū)70歲以上老人中,男、女需要志愿者提供幫助的比例各是多少?
(2)能否有的把握認為該地區(qū)70歲以上的老人是否需要志愿者提供幫助與性別有關;
(3)根據(jù)(2)的結(jié)論,能否提供更好的調(diào)查方法來估計該地區(qū)70歲以上老人中,需要志愿者提供幫助的老人的比例?說明理由.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠為提高生產(chǎn)效率,開展技術創(chuàng)新活動,提出了完成某項生產(chǎn)任務的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務的工作時間(單位:min)繪制了如下莖葉圖:
第一種生產(chǎn)方式 | 第二種生產(chǎn)方式 | |||||||||||||||||||
8 | 6 | 5 | 5 | 6 | 8 | 9 | ||||||||||||||
9 | 7 | 6 | 2 | 7 | 0 | 1 | 2 | 2 | 3 | 4 | 5 | 6 | 6 | 8 | ||||||
9 | 8 | 7 | 7 | 6 | 5 | 4 | 3 | 3 | 2 | 8 | 1 | 4 | 4 | 5 | ||||||
2 | 1 | 1 | 0 | 0 | 9 | 0 |
(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由;
(2)求40名工人完成生產(chǎn)任務所需時間的中位數(shù)m,并將完成生產(chǎn)任務所需時間超過m和不超過m的工人數(shù)填入下面的列聯(lián)表:
超過m | 不超過m | 總計 | |
第一種生產(chǎn)方式 | |||
第二種生產(chǎn)方式 | |||
總計 |
(3)根據(jù)(2)中的列表,能否有99%的把握認為兩種生產(chǎn)方式的效率有差異?
附:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的極坐標方程為,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系.
(1)若曲線:(t為參數(shù))與曲線相交于兩點,,求;
(2)若是曲線上的動點,且點的直角坐標為,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com