【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形,一個數(shù)學(xué)意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng),分形幾何學(xué)不僅讓人們感悟到科學(xué)與藝術(shù)的融合,數(shù)學(xué)與藝術(shù)審美的統(tǒng)一,而且還有其深刻的科學(xué)方法論意義,如圖,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出的謝爾賓斯基三角形就屬于一種分形,具體作法是取一個實心三角形,沿三角形的三邊中點連線.將它分成4個小三角形,去掉中間的那一個小三角形后,對其余3個小三角形重復(fù)上述過程逐次得到各個圖形,若記圖①三角形的面積為,則第n個圖中陰影部分的面積為( )

A.B.C.D.

【答案】D

【解析】

每一個圖形的面積是前一個圖形面積的,根據(jù)等比數(shù)列公式得到答案.

根據(jù)題意:每一個圖形的面積是前一個圖形面積的,即面積為首項為,公比為的等比數(shù)列,

故第n個圖中陰影部分的面積為.

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查某地區(qū)70歲以上老人是否需要志愿者提供幫助,用簡單隨機抽樣的方法從該地區(qū)調(diào)查了100位70歲以上老人,結(jié)果如下:

需要

18

5

不需要

32

45

(1)估計該地區(qū)70歲以上老人中,男、女需要志愿者提供幫助的比例各是多少?

(2)能否有的把握認為該地區(qū)70歲以上的老人是否需要志愿者提供幫助與性別有關(guān);

(3)根據(jù)(2)的結(jié)論,能否提供更好的調(diào)查方法來估計該地區(qū)70歲以上老人中,需要志愿者提供幫助的老人的比例?說明理由.

附:

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新冠狀病毒嚴重威脅著人們的身體健康,我國某醫(yī)療機構(gòu)為了調(diào)查新冠狀病毒對我國公民的感染程度,選了某小區(qū)的位居民調(diào)查結(jié)果統(tǒng)計如下:

感染

不感染

合計

年齡不大于

年齡大于

合計

1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

2)能否在犯錯誤的概率不超過的前提下認為感染新冠狀病與不同年齡有關(guān)?

3)已知在被調(diào)查的年齡大于歲的感染者中有名女性,其中位是女教師,現(xiàn)從這名女性中隨機抽取人,求至多有位教師的概率.

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的極坐標方程為,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系.

1)若曲線t為參數(shù))與曲線相交于兩點,,求;

2)若是曲線上的動點,且點的直角坐標為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究教學(xué)方式對教學(xué)質(zhì)量的影響,某高中數(shù)學(xué)老師分別用兩種不同的教學(xué)方式對入學(xué)數(shù)學(xué)平均分數(shù)和優(yōu)秀率都相同的甲、乙兩個高一新班進行教學(xué)(勤奮程度和自覺性都一樣).以下莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績

(1)學(xué)校規(guī)定:成績不低于75分的為優(yōu)秀.請畫出下面的列聯(lián)表

甲班

乙班

合計

優(yōu)秀

不優(yōu)秀

合計

(2)判斷有多大把握認為“成績優(yōu)秀與教學(xué)方式有關(guān)”.

下面臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公差大于0的等差數(shù)列的前n項和為,且滿足,.

1)求數(shù)列的通項公式

2)若,求的表達式;

3)若,存在非零常數(shù),使得數(shù)列是等差數(shù)列,存在,不等式成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),直線,圖象的任意兩條對稱軸,且的最小值為

1)求的表達式;

2)將函數(shù)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標伸長為原來的2倍,縱坐

標不變,得到函數(shù)的圖象,若關(guān)于的方程,在區(qū)間上有且只有一個實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A、B兩種品牌各三種車型20177月的銷量環(huán)比(與20176月比較)增長率如下表:

A品牌車型

A1

A2

A3

環(huán)比增長率

-7.29%

10.47%

14.70%

B品牌車型

B1

B2

B3

環(huán)比增長率

-8.49%

-28.06%

13.25%

根據(jù)此表中的數(shù)據(jù),有如下關(guān)于7月份銷量的四個結(jié)論:①A1車型銷量比B1車型銷量多;

②A品牌三種車型總銷量環(huán)比增長率可能大于14.70%;

③B品牌三款車型總銷量環(huán)比增長率可能為正;

④A品牌三種車型總銷量環(huán)比增長率可能小于B品牌三種車型總銷量環(huán)比增長率.

其中正確結(jié)論的個數(shù)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“勾股定理”在西方被稱為“畢達哥拉斯定理”,三國時期吳國的數(shù)學(xué)家趙爽在《周髀算經(jīng)》中注釋了其理論證明,其基本思想是圖形經(jīng)過割補后面積不變.即通過如圖所示的“弦圖”,將勻股定理表述為:“勾股各自乘,并之,為弦實,開方除之,即弦”(其中分別為勾股弦);證明方法敘述為:“按弦圖,又可以勾股相乘為朱實二,倍之為朱實四,以勾股之差自相乘為中黃實,加差實,亦成弦實”,即,化簡得.現(xiàn)已知,,向外圍大正方形區(qū)域內(nèi)隨機地投擲一枚飛鏢,飛鏢落在中間小正方形內(nèi)的概率是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案