【題目】已知函數(shù),.

(Ⅰ)當(dāng)時,求的圖象在點處的切線方程;

(Ⅱ)設(shè)函數(shù),討論函數(shù)的零點個數(shù).

【答案】(Ⅰ)(Ⅱ)見解析

【解析】

(Ⅰ)根據(jù)導(dǎo)數(shù)的幾何意義求出斜線的斜率,然后根據(jù)點斜式方程可得結(jié)果.(Ⅱ)根據(jù)函數(shù)的單調(diào)性和極值、最值得到函數(shù)圖象的大體形狀,在此基礎(chǔ)上判斷出零點的個數(shù).

(Ⅰ)當(dāng)時,,

所以,

所以

所以函數(shù)的圖象在點處的切線方程為

(Ⅱ)由題意得,定義域為

(i)當(dāng)時,對于任意的恒成立,故上單調(diào)遞減,

,則.

,

所以上有唯一零點.

(ii)當(dāng)時,令,得.

所以上單調(diào)遞減,在上單調(diào)遞增,

.

①若,函數(shù)無零點;

②若,,函數(shù)有唯一零點;

③若,

.

,

.

所以函數(shù)上各有一零點,從而函數(shù)有兩個零點.

綜上可得:當(dāng)時,函數(shù)沒有零點;當(dāng)時,函數(shù)有唯一零點;當(dāng)時,函數(shù)有兩個零點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合,其中,.如果集合滿足:對于任意的,都有,那么稱集合具有性質(zhì)

(Ⅰ)寫出一個具有性質(zhì)的集合;

(Ⅱ)證明:對任意具有性質(zhì)的集合;

(Ⅲ)求具有性質(zhì)的集合的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在邊長為3的菱形中,已知,且.將梯形沿直線折起,使平面,如圖2,分別是上的點.

(1)求證:圖2中,平面平面

(2)若平面平面,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)若,求直線的普通方程及曲線的直角坐標(biāo)方程;

(Ⅱ)若直線與曲線有兩個不同的交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

在其定義域上單調(diào)遞減,求的取值范圍;

存在兩個不同極值點,且,求證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,五邊形ABSCD中,四邊形ABCD為矩形,AB1,△BSC為邊長為2的正三角形,將△BSC沿BC折起,使得側(cè)面SAD垂直于平面ABCD,E、F分別為SADC的中點.

1)求證:EF∥面SBC;

2)求四棱錐SABCD的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,O為AD中點,AB=1,AD=2,AC=CD=.

(1)證明:直線AB∥平面PCO;

(2)求二面角P-CD-A的余弦值;

(3)在棱PB上是否存在點N,使AN⊥平面PCD,若存在,求線段BN的長度;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.

(1) 經(jīng)計算估計這組數(shù)據(jù)的中位數(shù);

(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機抽取個,再從這個中隨機抽取個,求這個芒果中恰有個在內(nèi)的概率.

(3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有個,經(jīng)銷商提出如下兩種收購方案:

A:所以芒果以/千克收購;

B:對質(zhì)量低于克的芒果以/個收購,高于或等于克的以/個收購.

通過計算確定種植園選擇哪種方案獲利更多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)政府為了解決農(nóng)村教師的住房問題,計劃征用一塊土地蓋一幢建筑總面積為10000公寓樓(每層的建筑面積相同).已知士地的征用費為,土地的征用面積為第一層的倍,經(jīng)工程技術(shù)人員核算,第一層建筑費用為,以后每增高一層,其建筑費用就增加,設(shè)這幢公寓樓高層數(shù)為n,總費用為萬元.(總費用為建筑費用和征地費用之和)

1)若總費用不超過835萬元,求這幢公寓樓最高有多少層數(shù)?

2)試設(shè)計這幢公寓的樓層數(shù),使總費用最少,并求出最少費用.

查看答案和解析>>

同步練習(xí)冊答案