【題目】某鄉(xiāng)鎮(zhèn)政府為了解決農(nóng)村教師的住房問(wèn)題,計(jì)劃征用一塊土地蓋一幢建筑總面積為10000公寓樓(每層的建筑面積相同).已知士地的征用費(fèi)為,土地的征用面積為第一層的倍,經(jīng)工程技術(shù)人員核算,第一層建筑費(fèi)用為,以后每增高一層,其建筑費(fèi)用就增加,設(shè)這幢公寓樓高層數(shù)為n,總費(fèi)用為萬(wàn)元.(總費(fèi)用為建筑費(fèi)用和征地費(fèi)用之和)

1)若總費(fèi)用不超過(guò)835萬(wàn)元,求這幢公寓樓最高有多少層數(shù)?

2)試設(shè)計(jì)這幢公寓的樓層數(shù),使總費(fèi)用最少,并求出最少費(fèi)用.

【答案】116;(2)設(shè)計(jì)這幢公寓為8樓層時(shí),總費(fèi)用最少為735萬(wàn)元

【解析】

1)先求出土地的征用的費(fèi)用和建筑費(fèi)用,再求總費(fèi)用為=,解不等式即得解;(2)利用基本不等式求最少費(fèi)用.

1)每層建筑面積,土地的征用的費(fèi)用萬(wàn)元;

建筑費(fèi)用;

,,即

),所以這幢公寓樓最高可以蓋16層;

2)由(1)知

當(dāng)且僅當(dāng)時(shí),即,為最小值.

所以設(shè)計(jì)這幢公寓為8樓層時(shí),總費(fèi)用最少為735萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(Ⅰ)當(dāng)時(shí),求的圖象在點(diǎn)處的切線(xiàn)方程;

(Ⅱ)設(shè)函數(shù),討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別是、,離心率,過(guò)點(diǎn)的直線(xiàn)交橢圓、兩點(diǎn), 的周長(zhǎng)為16.

(1)求橢圓的方程;

(2)已知為原點(diǎn),圓 )與橢圓交于、兩點(diǎn),點(diǎn)為橢圓上一動(dòng)點(diǎn),若直線(xiàn)軸分別交于、兩點(diǎn),求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高二年級(jí)舉行一次演講賽共有10位同學(xué)參賽,其中一班有3位,二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學(xué)恰好被排在一起(指演講序號(hào)相連),而二班的2位同學(xué)沒(méi)有被排在一起的概率為:(   )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓(常數(shù)),P是曲線(xiàn)C上的動(dòng)點(diǎn),M是曲線(xiàn)C的右頂點(diǎn),定點(diǎn)A的坐標(biāo)為.

1)若MA重合,求曲線(xiàn)C的焦距.

2)若,求的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)的焦點(diǎn)F為圓C的圓心.

求拋物線(xiàn)的方程與其準(zhǔn)線(xiàn)方程;

直線(xiàn)l與圓C相切,交拋物線(xiàn)于A,B兩點(diǎn);

若線(xiàn)段AB中點(diǎn)的縱坐標(biāo)為,求直線(xiàn)l的方程;

的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)對(duì)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面ABCD是正方形,平面平面ABCD,平面平面ABCD

證明:平面ABCD

若二面角的大小為,求PB與平面PAD所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將正方形沿對(duì)角線(xiàn)折起,當(dāng)以四點(diǎn)為頂點(diǎn)的三棱錐體積最大時(shí),異面直線(xiàn) 所成的角為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案