【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A,ω>0,﹣π<φ<π)在一個(gè)周期內(nèi)的圖象如圖所示.

(1)求f(x)的表達(dá)式;
(2)在△ABC中,f(C+ )=﹣1且 <0,求角C.

【答案】
(1)解:由圖可知函數(shù)的最大值是2,最小值是﹣2,

∴A=2,

T= + = ,

∴T=π= ,可得:ω=2,

又∵f(x)過(guò)點(diǎn)(﹣ ,0),且根據(jù)圖象特征得:﹣2× +φ=0+2kπ,k∈Z,

∴φ= +2kπ,k∈Z,

而﹣π<φ<π,

∴φ=

∴f(x)=2sin(2x+


(2)解:∵f(x)=2sin(2x+ ),

∴f(C+ )=2sin(2C )=﹣1,

∴sin(2C )=﹣

因?yàn)镃為三角形內(nèi)角,

∴C=

又∵ =abcosC<0,0<C<π,

∴cosC<0, <C<π,

∴C=


【解析】(1)由函數(shù)的最值求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,從而求得函數(shù)f(x)的表達(dá)式.(2)利用(1)及f(C+ )=﹣1可得sin(2C )=﹣ ,結(jié)合角的范圍可求C= ,利用平面向量數(shù)量積的運(yùn)算可求cosC<0,從而可求C的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】動(dòng)點(diǎn)分別到兩定點(diǎn) 連線的斜率之乘積為,設(shè)的軌跡為曲線, , 分別為曲線的左右焦點(diǎn),則下列命題中:

(1)曲線的焦點(diǎn)坐標(biāo)為, ;

(2)若,則 ;

(3)當(dāng)時(shí), 的內(nèi)切圓圓心在直線上;

(4)設(shè),則的最小值為.

其中正確命題的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知α,β∈( ,π),sin(α+β)=﹣ ,sin(β﹣ )= ,則cos(α+ )=(
A.
B.
C.﹣
D.﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中, 是等腰直角三角形, ,側(cè)棱, 分別為的中點(diǎn),點(diǎn)在平面上的射影是的重心.

(1)求證: 平面;

2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的公差d>0.設(shè){an}的前n項(xiàng)和為Sn,a1=1,S2·S3=36.

(1)求dSn;

(2)求m,k(mk∈N*)的值,使得amam+1am+2+…+amk=65.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為測(cè)得河對(duì)岸塔AB的高,先在河岸上選一點(diǎn)C,使C在塔底B的正東方向上,測(cè)得點(diǎn)A的仰角為60°,再由點(diǎn)C沿北偏東15°方向走10 m到位置D,測(cè)得∠BDC45°,則塔AB的高是( )

A. 10m B. 10m C. 10m D. 10m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為

(Ⅰ)分別求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線交曲線, 兩點(diǎn),交曲線, 兩點(diǎn),求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校100名學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖

(1)求圖中a的值;

(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生期中考試數(shù)學(xué)成績(jī)的平均分;

(3)現(xiàn)用分層抽樣的方法從3、4、5組中隨機(jī)抽取6名學(xué)生,將該樣本看成一個(gè)總體,從中隨機(jī)抽取2名,求其中恰有1人的分?jǐn)?shù)不低于90分的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了提高產(chǎn)品的年產(chǎn)量,某企業(yè)擬在2013年進(jìn)行技術(shù)改革,經(jīng)調(diào)查測(cè)算,產(chǎn)品當(dāng)年的產(chǎn)量x萬(wàn)件與投入技術(shù)改革費(fèi)用m萬(wàn)元(m≥0)滿足x=3﹣ (k為常數(shù)).如果不搞技術(shù)改革,則該產(chǎn)品當(dāng)年的產(chǎn)量只能是1萬(wàn)件.已知2013年生產(chǎn)該產(chǎn)品的固定投入為8萬(wàn)元,每生產(chǎn)1萬(wàn)件該產(chǎn)品需要再投入16萬(wàn)元.由于市場(chǎng)行情較好,廠家生產(chǎn)均能銷售出去,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品生產(chǎn)成本的1.5倍(生產(chǎn)成本包括固定投入和再投入兩部分資金)
(1)試確定k的值,并將2013年該產(chǎn)品的利潤(rùn)y萬(wàn)元表示為技術(shù)改革費(fèi)用m萬(wàn)元的函數(shù)(利潤(rùn)=銷售金額﹣生產(chǎn)成本﹣技術(shù)改革費(fèi)用);
(2)該企業(yè)2013年的技術(shù)改革費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大?并求出最大利潤(rùn).

查看答案和解析>>

同步練習(xí)冊(cè)答案