【題目】某校100名學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖:
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生期中考試數(shù)學(xué)成績(jī)的平均分;
(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機(jī)抽取6名學(xué)生,將該樣本看成一個(gè)總體,從中隨機(jī)抽取2名,求其中恰有1人的分?jǐn)?shù)不低于90分的概率?
【答案】(1) a=0.005(2)74.5(3)
【解析】試題分析:(1)由頻率分布圖中小矩形面積和為1,能求出a的值
(2)由頻率分布直方圖,同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表即可估計(jì)這100名學(xué)生期中考試數(shù)學(xué)成績(jī)的平均分.
(Ⅲ)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機(jī)抽取6名學(xué)生,則第3、4、5組分別抽取3人、2人、1人,由此利用對(duì)立事件概率計(jì)算公式能求出從中隨機(jī)抽取2名,第4組的至少有一位同學(xué)入選的概率.
試題解析:(1)由題意得10a+0.01×10+0.02×10+0.03×10+0.035×10=1,所以a=0.005.
(2)由直方圖分?jǐn)?shù)在[50,60]的頻率為0.05,[60,70]的頻率為0.35,[70,80]的頻率為0.30,
[80,90]的頻率為0.20,[90,100]的頻率為0.10,所以這100名學(xué)生期中考試數(shù)學(xué)成績(jī)的平均分的估計(jì)值為:55×0.05+65×0.35+75×0.30+85×0.20+95×0.10=74.5
(3)由直方圖,得:
第3組人數(shù)為0.3×100=30。
第4組人數(shù)為0.2×100=20人,
第5組人數(shù)為0.1×100=10人.
所以利用分層抽樣在60名學(xué)生中抽取6名學(xué)生,
每組分別為:
第3組:人,
第4組:人,
第5組: =1人.
所以第3、4、5組分別抽取3人、2人、1人.…
設(shè)第3組的3位同學(xué)為A1,A2,A3,第4組的2位同學(xué)為B1,B2,第5組的1位同學(xué)為C1,則從六位同學(xué)中抽兩位同學(xué)有15種可能如下:
(A1,A2),(A1,A3),(B1,B2),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A1,C1),(A2,C1),(A3,C1),(B1,C1),(B2,C1),
其中恰有1人的分?jǐn)?shù)不低于90(分)的情形有:(A1,C1),(A2,C1),(A3,C1),(B1,C1),(B2,C1),共5種.…
所以其中第4組的2位同學(xué)至少有一位同學(xué)入選的概率為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某家電公司銷(xiāo)售部門(mén)共有200位銷(xiāo)售員,每位部門(mén)對(duì)每位銷(xiāo)售員都有1400萬(wàn)元的年度銷(xiāo)售任務(wù),已知這200位銷(xiāo)售員去年完成銷(xiāo)售額都在區(qū)間(單位:百萬(wàn)元)內(nèi),現(xiàn)將其分成5組,第1組,第2組,第3組,第4組,第5組對(duì)應(yīng)的區(qū)間分別為, , , , ,繪制出頻率分布直方圖.
(1)求的值,并計(jì)算完成年度任務(wù)的人數(shù);
(2)用分層抽樣從這200位銷(xiāo)售員中抽取容量為25的樣本,求這5組分別應(yīng)抽取的人數(shù);
(3)現(xiàn)從(2)中完成年度任務(wù)的銷(xiāo)售員中隨機(jī)選取2位,獎(jiǎng)勵(lì)海南三亞三日游,求獲得此獎(jiǎng)勵(lì)的2位銷(xiāo)售員在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A,ω>0,﹣π<φ<π)在一個(gè)周期內(nèi)的圖象如圖所示.
(1)求f(x)的表達(dá)式;
(2)在△ABC中,f(C+ )=﹣1且 <0,求角C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2sinx(sinx+ cosx)﹣1(其中x∈R),求:
(1)函數(shù)f(x)的最小正周期;
(2)函數(shù)f(x)的單調(diào)減區(qū)間;
(3)函數(shù)f(x)圖象的對(duì)稱軸和對(duì)稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)在定義域上存在區(qū)間[a,b](ab>0),使f(x)在[a,b]上值域?yàn)閇 ],則稱f(x)在[a,b]上具有“反襯性”.下列函數(shù)①f(x)=﹣x+ ②f(x)=﹣x2+4x ③f(x)=sin x ④f(x)= ,具有“反襯性”的為|( )
A.②③
B.①③
C.①④
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線x﹣y+=0相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過(guò)點(diǎn)M(2,0)的直線與橢圓C相交于兩點(diǎn)A,B,當(dāng)時(shí),求直線斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com