【題目】(本小題滿分10分)如圖,在長方體中,,,與相交于點,點在線段上(點與點不重合).
(1)若異面直線與所成角的余弦值為,求的長度;
(2)若,求平面與平面所成角的正弦值.
科目:高中數(shù)學 來源: 題型:
【題目】某校高二(1)班的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖,且將全班25人的成績記為AI(I=1,2,…,25)由右邊的程序運行后,輸出n=10.據(jù)此解答如下問題:
(Ⅰ)求莖葉圖中破損處分數(shù)在[50,60),[70,80),[80,90)各區(qū)間段的頻數(shù);
(Ⅱ)利用頻率分布直方圖估計該班的數(shù)學測試成績的眾數(shù),中位數(shù)分別是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分16分)已知為實數(shù),函數(shù),函數(shù).
(1)當時,令,求函數(shù)的極值;
(2)當時,令,是否存在實數(shù),使得對于函數(shù)定義域中的任意實數(shù),均存在實數(shù),有成立,若存在,求出實數(shù)的取值集合;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若a、b、c是常數(shù),則“a>0且b2﹣4ac<0”是“對任意x∈R,有ax2+bx+c>0”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分14分)如圖,我市有一個健身公園,由一個直徑為2km的半圓和一個以為斜邊的等腰直角三角形構成,其中為的中點.現(xiàn)準備在公園里建設一條四邊形健康跑道,按實際需要,四邊形的兩個頂點分別在線段上,另外兩個頂點在半圓上, ,且間的距離為1km.設四邊形的周長為km.
(1)若分別為的中點,求長;
(2)求周長的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,已知角A、B、C所對的邊分別為a、b、c,且a2+b2﹣c2= ab.
(1)求角C的大小;
(2)如果0<A≤ ,m=2cos2 ﹣sinB﹣1,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)=x3+x(x∈R),當 時,f(msinθ)+f(1﹣m)>0恒成立,則實數(shù)m的取值范圍是( )
A.(﹣∞,1)
B.(﹣∞,0)
C.(﹣∞, )
D.(0,1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】先把正弦函數(shù)y=sinx圖象上所有的點向左平移 個長度單位,再把所得函數(shù)圖象上所有的點的縱坐標縮短到原來的 倍(橫坐標不變),再將所得函數(shù)圖象上所有的點的橫坐標縮短到原來的 倍(縱坐標不變),則所得函數(shù)圖象的解析式是( )
A.y=2sin( x+ )
B.y= sin(2x﹣ )
C.y=2sin( x﹣ )
D.y= sin(2x+ )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長為2的正方形,側面PAD⊥底面ABCD,且PA=PD= AD.
(1)求證:平面PAB⊥平面PDC
(2)在線段AB上是否存在一點G,使得二面角C﹣PD﹣G的余弦值為 .若存在,求 的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com