【題目】設(shè)函數(shù),,其中a,.
(1)求的單調(diào)區(qū)間;
(2)若存在極值點,且,其中,求證:;
(3)設(shè),函數(shù),求證:在區(qū)間上的最大值不小于.
【答案】(1)的增區(qū)間為,,減區(qū)間為;(2)證明見解析;(3)見解析.
【解析】
(1)求出的導數(shù),討論時,在R上遞增;當時,由導數(shù)大于0,可得增區(qū)間;導數(shù)小于0,可得減區(qū)間;
(2)由條件判斷出,且,由求出,分別代入解析式化簡,,化簡整理后可得證;
(3)設(shè)在區(qū)間上的最大值M,根據(jù)極值點與區(qū)間的關(guān)系對a分三種情況討論,運用單調(diào)性和前兩問的結(jié)論,求出在區(qū)間上的取值范圍,利用a的范圍化簡整理后求出M,再利用不等式的性質(zhì)證明結(jié)論成立.
(1)若,則,
分兩種情況討論:
①、當時,有恒成立,此時的單調(diào)遞增區(qū)間為;
②、當時,令,解得或,
當或時,,為增函數(shù),
當時,,為減函數(shù),
故的增區(qū)間為,,減區(qū)間為;
(2)若存在極值點,則必有,且,
由題意可得,,則,
進而,
又,
由題意及(1)可得:存在唯一的實數(shù),滿足,其中,
則有,故有;
(3)設(shè)在區(qū)間上的最大值M,表示x、y兩個數(shù)的最大值,
下面分三種情況討論:
①當時,,
由(1)知在區(qū)間上單調(diào)遞減,
所以在區(qū)間上的取值范圍是,
因此
,所以。
②當時,,
由(1)、(2)知,,,
所以在區(qū)間上的取值范圍是,
因此
,
③當時,,
由(1)、(2)知,,,
所以在區(qū)間上的取值范圍是,
因此
,
綜上所述,當時,在區(qū)間上的最大值不小于.
科目:高中數(shù)學 來源: 題型:
【題目】今年1月至2月由新型冠狀病毒引起的肺炎病例陡然增多,為了嚴控疫情傳播,做好重點人群的預防工作,某地區(qū)共統(tǒng)計返鄉(xiāng)人員人,其中歲及以上的共有人.這人中確診的有名,其中歲以下的人占.
確診患新冠肺炎 | 未確診患新冠肺炎 | 合計 | |
50歲及以上 | 40 | ||
50歲以下 | |||
合計 | 10 | 100 |
(1)試估計歲及以上的返鄉(xiāng)人員感染新型冠狀病毒引起的肺炎的概率;
(2)請將下面的列聯(lián)表補充完整,并判斷是否有%的把握認為是否確診患新冠肺炎與年齡有關(guān);
參考表:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年3月5日上午,李克強總理做政府工作報告時表示,將新能源汽車車輛購置稅優(yōu)惠政策再延長三年,自2018年1月1日至2020年12月31日,對購置的新能源汽車免征車輛購置稅.新能源汽車銷售的春天來了!從衡陽地區(qū)某品牌新能源汽車銷售公司了解到,為了幫助品牌迅速占領(lǐng)市場,他們采取了保證公司正常運營的前提下實行薄利多銷的營銷策略(即銷售單價隨日銷量(臺)變化而有所變化),該公司的日盈利(萬元),經(jīng)過一段時間的銷售得到,的一組統(tǒng)計數(shù)據(jù)如下表:
日銷量臺 | 1 | 2 | 3 | 4 | 5 |
日盈利萬元 | 6 | 13 | 17 | 20 | 22 |
將上述數(shù)據(jù)制成散點圖如圖所示:
(1)根據(jù)散點圖判斷與中,哪個模型更適合刻畫,之間的關(guān)系?并從函數(shù)增長趨勢方面給出簡單的理由;
(2)根據(jù)你的判斷及下面的數(shù)據(jù)和公式,求出關(guān)于的回歸方程,并預測當日銷量時,日盈利是多少?
參考公式及數(shù)據(jù):線性回歸方程,其中,;
,,
,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如表是我國某城市在2017年1月份至10月份個月最低溫與最高溫()的數(shù)據(jù)一覽表.
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
最高溫 | 5 | 9 | 9 | 11 | 17 | 24 | 27 | 30 | 31 | 21 |
最低溫 |
已知該城市的各月最低溫與最高溫具有相關(guān)關(guān)系,根據(jù)這一覽表,則下列結(jié)論錯誤的是( )
A.最低溫與最高位為正相關(guān)
B.每月最高溫和最低溫的平均值在前8個月逐月增加
C.月溫差(最高溫減最低溫)的最大值出現(xiàn)在1月
D.1月至4月的月溫差(最高溫減最低溫)相對于7月至10月,波動性更大
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),、、,且都有,滿足的實數(shù)有且只有個,給出下述四個結(jié)論:
①滿足題目條件的實數(shù)有且只有個;②滿足題目條件的實數(shù)有且只有個;
③在上單調(diào)遞增;④的取值范圍是.
其中所有正確結(jié)論的編號是( )
A.①④B.②③C.①②③D.①③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國歷法推測遵循以測為輔、以算為主的原則.例如《周髀算經(jīng)》和《易經(jīng)》里對二十四節(jié)氣的晷(guǐ)影長的記錄中,冬至和夏至的晷影長是實測得到的,其它節(jié)氣的晷影長則是按照等差數(shù)列的規(guī)律計算得出的.下表為《周髀算經(jīng)》對二十四節(jié)氣晷影長的記錄,其中寸表示115寸分(1寸=10分).
節(jié)氣 | 冬至 | 小寒 (大雪) | 大寒 (小雪) | 立春 (立冬) | 雨水 (霜降) | 驚蟄 (寒露) | 春分 (秋分) | 清明 (白露) | 谷雨 (處暑) | 立夏 (立秋) | 小滿 (大暑) | 芒種 (小暑) | 夏至 |
晷影長 (寸 | 135 | 75.5 | 16.0 |
已知《易經(jīng)》中記錄某年的冬至晷影長為130.0寸,夏至晷影長為14.8寸,按照上述規(guī)律那么《易經(jīng)》中所記錄的春分的晷影長應(yīng)為( )
A.91.6寸B.82.0寸C.81.4寸D.72.4寸
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,分別為橢圓的左右焦點,點為橢圓上的一動點,面積的最大值為2.
(1)求橢圓的方程;
(2)直線與橢圓的另一個交點為,點,證明:直線與直線關(guān)于軸對稱.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com