【題目】2019年初,某高級(jí)中學(xué)教務(wù)處為了解該高級(jí)中學(xué)學(xué)生的作文水平,從該高級(jí)中學(xué)學(xué)生某次考試成績(jī)中按文科、理科用分層抽樣方法抽取人的成績(jī)作為樣本,得到成績(jī)頻率分布直方圖如圖所示,,參考的文科生與理科生人數(shù)之比為,成績(jī)(單位:分)分布在的范圍內(nèi)且將成績(jī)(單位:分)分為,,,,,六個(gè)部分,規(guī)定成績(jī)分?jǐn)?shù)在分以及分以上的作文被評(píng)為“優(yōu)秀作文”,成績(jī)分?jǐn)?shù)在50分以下的作文被評(píng)為“非優(yōu)秀作文”.

1)求實(shí)數(shù)的值;

2)(i)完成下面列聯(lián)表;

文科生/

理科生/

合計(jì)

優(yōu)秀作文

6

______

______

非優(yōu)秀作文

______

______

______

合計(jì)

______

______

400

ii)以樣本數(shù)據(jù)研究學(xué)生的作文水平,能否在犯錯(cuò)誤的概率不超過的情況下認(rèn)為獲得“優(yōu)秀作文”與學(xué)生的“文理科“有關(guān)?

注:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1,2)(i)填表見解析(ii)在犯錯(cuò)誤的概率不超過的情況下,不能認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)

【解析】

1)根據(jù)頻率直方圖得到,,解得答案.

2)(i)計(jì)算人中文科生的數(shù)量為,理科生的數(shù)量為,完善列聯(lián)表得到答案.

2)(ii)計(jì)算,對(duì)比臨界值表得到答案.

1)由頻率分布直方圖可知,

因?yàn)?/span>,所以,

解得,所以.

,,.

2)(i)獲獎(jiǎng)的人數(shù)為人,

因?yàn)閰⒖嫉奈目粕c理科生人數(shù)之比為

所以人中文科生的數(shù)量為,理科生的數(shù)量為.

由表可知,獲獎(jiǎng)的文科生有人,所以獲獎(jiǎng)的理科生有人,

不獲獎(jiǎng)的文科生有人,不獲獎(jiǎng)的理科生有.

于是可以得到列聯(lián)表如下:

文科生

理科生

合計(jì)

獲獎(jiǎng)

6

14

20

不獲獎(jiǎng)

74

306

380

合計(jì)

80

320

400

ii)計(jì)算;

所以在犯錯(cuò)誤的概率不超過的情況下,不能認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (是自然對(duì)數(shù)的底數(shù))

(1)求證:

(2)若不等式上恒成立,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售某海鮮,統(tǒng)計(jì)了春節(jié)前后50天該海鮮的需求量,單位:公斤),其頻率分布直方圖如圖所示,該海鮮每天進(jìn)貨1次,商店每銷售1公斤可獲利50元;若供大于求,剩余的削價(jià)處理,每處理1公斤虧損10元;若供不應(yīng)求,可從其它商店調(diào)撥,銷售1公斤可獲利30元.假設(shè)商店每天該海鮮的進(jìn)貨量為14公斤,商店的日利潤(rùn)為元.

(1)求商店日利潤(rùn)關(guān)于需求量的函數(shù)表達(dá)式;

(2)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替.

①求這50天商店銷售該海鮮日利潤(rùn)的平均數(shù);

②估計(jì)日利潤(rùn)在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)期間某商店出售某種海鮮禮盒,假設(shè)每天該禮盒的需求量在范圍內(nèi)等可能取值,該禮盒的進(jìn)貨量也在范圍內(nèi)取值(每天進(jìn)1次貨).商店每銷售1盒禮盒可獲利50元;若供大于求,剩余的削價(jià)處理,每處理1盒禮盒虧損10元;若供不應(yīng)求,可從其它商店調(diào)撥,銷售1盒禮盒可獲利30.設(shè)該禮盒每天的需求量為盒,進(jìn)貨量為盒,商店的日利潤(rùn)為.

1)求商店的日利潤(rùn)關(guān)于需求量的函數(shù)表達(dá)式;

2)試計(jì)算進(jìn)貨量為多少時(shí),商店日利潤(rùn)的期望值最大?并求出日利潤(rùn)期望值的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校周五的課程表設(shè)計(jì)中,要求安排8節(jié)課(上午4節(jié)下午4節(jié)),分別安排語文數(shù)學(xué)英語物理化學(xué)生物政治歷史各一節(jié),其中生物只能安排在第一節(jié)或最后一節(jié),數(shù)學(xué)和英語在安排時(shí)必須相鄰(注:上午的最后一節(jié)與下午的第一節(jié)不記作相鄰),則周五的課程順序的編排方法共有( ).

A.4800B.2400C.1200D.240

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)滿足:對(duì)任意實(shí)數(shù),方程的解的個(gè)數(shù)為偶數(shù)(可以是0個(gè),但不能是無數(shù)個(gè)),則稱為“偶的函數(shù)”.證明:

(1)任何多項(xiàng)式均不是偶的函數(shù);

(2)存在連續(xù)函數(shù)是偶的函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),恒成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校2011年到2019年參加北約”“華約考試而獲得加分的學(xué)生人數(shù)(每位學(xué)生只能參加北約”“華約中的一種考試)可以通過以下表格反映出來,(為了方便計(jì)算,將2011年編號(hào)為1,2012年編號(hào)為2,依此類推)

年份x

1

2

3

4

5

6

7

8

9

人數(shù)y

2

3

5

4

5

7

8

10

10

1)求這九年來,該校參加北約”“華約考試而獲得加分的學(xué)生人數(shù)的平均數(shù)和方差;

2)根據(jù)最近五年的數(shù)據(jù),利用最小二乘法求出yx的線性回歸方程,并依此預(yù)測(cè)該校2020年參加北約”“華約考試而獲得加分的學(xué)生人數(shù).(最終結(jié)果精確至個(gè)位)

參考數(shù)據(jù):回歸直線的方程是,其中,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為、,過的直線交橢圓兩點(diǎn),若的最大值為5,則b的值為( )

A. 1 B. C. D. 2

查看答案和解析>>

同步練習(xí)冊(cè)答案