【題目】已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和Sn滿足2Sn=an2+an-2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn.
(3)是否存在實(shí)數(shù)λ使得Tn+2>λSn對n∈N+恒成立,若存在,求實(shí)數(shù)λ的取值范圍,若不存在說明理由.
【答案】(1);(2);(3)存在,
【解析】
(1)直接利用遞推關(guān)系式的應(yīng)用求出數(shù)列的通項(xiàng)公式.
(2)利用(1)的結(jié)論,進(jìn)一步求出數(shù)列的通項(xiàng)公式.
(3)利用恒成立問題的應(yīng)用和函數(shù)的單調(diào)性的應(yīng)用求出參數(shù)的取值范圍.
(1)當(dāng)n=1時,a1=2或-1(舍去).
當(dāng)n≥2時,,
整理可得:(an+an-1)(an-an-1-1)=0,
可得an-an-1=1,
∴{an}是以a1=2為首項(xiàng),d=1為公差的等差數(shù)列.
∴.
(2)由(1)得an=n+1,
∴.
∴.
(3)假設(shè)存在實(shí)數(shù)λ,使得對一切正整數(shù)恒成立,
即對一切正整數(shù)恒成立,只需滿足即可,
令,
則
當(dāng)
故 f(1)=1,f(2)=,f(3)=,>f(5)>f(6)>…
當(dāng)n=3時有最小值.
所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題:函數(shù)的定義域?yàn)?/span>;命題:關(guān)于的方程有實(shí)根.
(1)如果是真命題,求實(shí)數(shù)的取值范圍.
(2)如果命題“”為真命題,且“”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān), 現(xiàn)收集了該種藥用昆蟲的6組觀測數(shù)據(jù)如下表:
溫度x/C | 21 | 23 | 24 | 27 | 29 | 32 |
產(chǎn)卵數(shù)y/個 | 6 | 11 | 20 | 27 | 57 | 77 |
經(jīng)計(jì)算得: , , , ,
,線性回歸模型的殘差平方和,e8.0605≈3167,其中xi, yi分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1, 2, 3, 4, 5, 6.
(Ⅰ)若用線性回歸模型,求y關(guān)于x的回歸方程=x+(精確到0.1);
(Ⅱ)若用非線性回歸模型求得y關(guān)于x的回歸方程為=0.06e0.2303x,且相關(guān)指數(shù)R2=0.9522.
( i )試與(Ⅰ)中的回歸模型相比,用R2說明哪種模型的擬合效果更好.
( ii )用擬合效果好的模型預(yù)測溫度為35C時該種藥用昆蟲的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).
附:一組數(shù)據(jù)(x1,y1), (x2,y2), ...,(xn,yn ), 其回歸直線=x+的斜率和截距的最小二乘估計(jì)為
=;相關(guān)指數(shù)R2=.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={(x,y)|(x-4)2+y2=1},B={(x,y)|(x-t)2+(y-at+2)2=1},如果命題“t∈R,A∩B≠”是真命題,則實(shí)數(shù)a的取值范圍是( )
A.B.
C.D.,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)若曲線和曲線有三個公共點(diǎn),求以這三個公共點(diǎn)為頂點(diǎn)的三角形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的兩個焦點(diǎn)分別為和,短軸的兩個端點(diǎn)分別為和,點(diǎn)在橢圓上,且滿足,當(dāng)變化時,給出下列三個命題:
①點(diǎn)的軌跡關(guān)于軸對稱;②的最小值為2;
③存在使得橢圓上滿足條件的點(diǎn)僅有兩個,
其中,所有正確命題的序號是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若在區(qū)間上存在不相等的實(shí)數(shù),使成立,求的取值范圍;
(Ⅲ)若函數(shù)有兩個不同的極值點(diǎn),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公園準(zhǔn)備在一圓形水池里設(shè)置兩個觀景噴泉,觀景噴泉的示意圖如圖所示,兩點(diǎn)為噴泉,圓心為的中點(diǎn),其中米,半徑米,市民可位于水池邊緣任意一點(diǎn)處觀賞.
(1)若當(dāng)時,,求此時的值;
(2)設(shè),且.
(i)試將表示為的函數(shù),并求出的取值范圍;
(ii)若同時要求市民在水池邊緣任意一點(diǎn)處觀賞噴泉時,觀賞角度的最大值不小于,試求兩處噴泉間距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直三棱柱中,,,其中為棱上的中點(diǎn),為棱上且位于點(diǎn)上方的動點(diǎn).
(1)證明:平面;
(2)若平面與平面所成的銳二面角的余弦值為,求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com