【題目】已知橢圓的兩個焦點分別為,短軸的兩個端點分別為,點在橢圓上,且滿足,當變化時,給出下列三個命題:

①點的軌跡關(guān)于軸對稱;②的最小值為2;

③存在使得橢圓上滿足條件的點僅有兩個,

其中,所有正確命題的序號是__________

【答案】①②

【解析】分析運用橢圓的定義可得也在橢圓上,分別畫出兩個橢圓的圖形,即可判斷正確;由圖象可得當的橫坐標和縱坐標的絕對值相等時,的值取得最小,即可判斷正確通過的變化,可得不正確.

詳解

橢圓的兩個焦點分別為

,

短軸的兩個端點分別為,

,在橢圓

且滿足,

由橢圓定義可得,,

即有在橢圓,

對于①,換為方程不變,

則點的軌跡關(guān)于軸對稱,故正確.;

對于②,由圖象可得,當滿足,

即有

時,取得最小值,

可得,

即有取得最小值為,正確;

對于③,由圖象可得軌跡關(guān)于軸對稱,且,

則橢圓上滿足條件的點

不存在使得橢圓上滿足條件的點,不正確.

,故答案為①②.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=sin(ωx+φ)+ 的圖象過(1,2),若f(x)相鄰的零點為x1 , x2且滿足|x1﹣x2|=6,則f(x)的單調(diào)增區(qū)間為(
A.[﹣2+12k,4+12k](k∈Z)
B.[﹣5+12k,1+12k](k∈Z)
C.[1+12k,7+12k](k∈Z)
D.[﹣2+6k,1+6k](k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓和點, ,.

(1)若點是圓上任意一點,求;

(2)過圓 上任意一點 與點的直線,交圓于另一點,連接,,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】黨的十九大報告指出,建設生態(tài)文明是中華民族永續(xù)發(fā)展的千年大計.而清潔能源的廣泛使用將為生態(tài)文明建設提供更有力的支撐.沼氣作為取之不盡、用之不竭的生物清潔能源,在保護綠水青山方面具有獨特功效.通過辦沼氣帶來的農(nóng)村“廁所革命”,對改善農(nóng)村人居環(huán)境等方面,起到立竿見影的效果.為了積極響應國家推行的“廁所革命”,某農(nóng)戶準備建造一個深為2米,容積為32立方米的長方體沼氣池,如果池底每平方米的造價為150元,池壁每平方米的造價為120元,沼氣池蓋子的造價為3000元,問怎樣設計沼氣池能使總造價最低?最低總造價是多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ﹣mx(m∈R). (Ⅰ)當m=0時,討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)當b>a>0時,總有 >1成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓與直線,動直線過定點.

1)若直線與圓相切,求直線的方程;

2)若直線與圓相交于兩點,點MPQ的中點,直線與直線相交于點N.探索是否為定值,若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】筒車是我國古代發(fā)明的一種水利灌溉工具,因其經(jīng)濟又環(huán)保,至今還在農(nóng)業(yè)生產(chǎn)中得到使用,如左下圖.假定在水流量穩(wěn)定的情況下,半徑為3m的筒車上的每一個盛水桶都按逆時針方向作角速度為rad/min的勻速圓周運動,平面示意圖如右下圖,己知筒車中心O到水面BC的距離為2m,初始時刻其中一個盛水筒位于點P0處,且∠P0OAOA//BC),則8min后該盛水筒到水面的距離為____m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市從高二年級隨機選取1000名學生,統(tǒng)計他們選修物理、化學、生物、政治、歷史和地理六門課程(前3門為理科課程,后3門為文科課程)的情況,得到如下統(tǒng)計表,其中“√”表示選課,空白表示未選.

科目

方案 人數(shù)

物理

化學

生物

政治

歷史

地理

220

200

180

175

135

90

(Ⅰ)在這1000名學生中,從選修物理的學生中隨機選取1人,求該學生選修政治的概率;

(Ⅱ)在這1000名學生中,從選擇方案一、二、三的學生中各選取2名學生,如果在這6名學生中隨機選取2名,求這2名學生除選修物理以外另外兩門選課中有相同科目的概率;

(Ⅲ)利用表中數(shù)據(jù)估計該市選課偏文(即選修至少兩門文科課程)的學生人數(shù)多還是偏理(即選修至少兩門理科課程)的學生人數(shù)多,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)f(x)=2sin(2x﹣)的圖象向左平移個單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖象,若y=g(x)在[0,b](b>0)上至少含有10個零點,則b的最小值為

查看答案和解析>>

同步練習冊答案